精英家教网 > 高中数学 > 题目详情
18.设函数 f(x)=|3x+1|-|x-4|.
(1)解不等式f(x)<0
(2)若f(x)+4|x-4|>m对一切实数x均成立,求实数m的取值范围.

分析 (1)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(2)根据题意,|x+1|+|x-4|>$\frac{m}{3}$恒成立,利用绝对值三角不等式求得|x+1|+|x-4|≥5,可得5>$\frac{m}{3}$,由此求得m的范围.

解答 解:(1)∵函数 f(x)=|3x+1|-|x-4|=$\left\{\begin{array}{l}{-2x-5,x<-\frac{1}{3}}\\{4x-3,-\frac{1}{3}≤x≤4}\\{2x+5,x>4}\end{array}\right.$,由不等式f(x)<0,
可得$\left\{\begin{array}{l}{x<-\frac{1}{3}}\\{-2x-5<0}\end{array}\right.$①,$\left\{\begin{array}{l}{-\frac{1}{3}≤x≤4}\\{4x-3<0}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>4}\\{2+5<0}\end{array}\right.$.
解①求得-$\frac{5}{2}$<x<-$\frac{1}{3}$,解②求得-$\frac{1}{3}$≤x<$\frac{3}{4}$,解③求得x∈∅.
综上可得,不等式的解集为{x|-$\frac{5}{2}$<x<$\frac{3}{4}$}.
(2)f(x)+4|x-4|>m对一切实数x均成立,
即|3x+1|-|x-4|+4|x-4|>m恒成立,即|x+1|+|x-4|>$\frac{m}{3}$恒成立.
∵|x+1|+|x-4|≥|x+1-(x-4)|=5,∴5>$\frac{m}{3}$,即m<15,
故要求的实数m的取值范围为(-∞,15).

点评 本题主要考查带有绝对值的函数,函数的恒成立问题,解绝对值不等式,绝对值三角不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.如果△ABC内接于单位圆,且$({a^2}-{c^2})=(\sqrt{2}a-b)b$,则△ABC面积的最大值为$\frac{{\sqrt{2}+1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的增函数,若f(a2-a)>f(2a2-4a),则实数a的取值范围是(  )
A.(-∞,0)B.(0,3)C.(3,+∞)D.(-∞,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题中真命题的序号为(1).
(1)命题“?x>0,x2-x≤0”的否定是“?x>0,x2-x>0.”
(2)若A>B,则sinA>sinB.
(3)已知数列{an},则“an,an+1,an+2成等比数列”是“$a_{n+1}^2={a_n}{a_{n+2}}$”的充要条件
(4)已知函数$f(x)=lgx+\frac{1}{lgx}$,则函数f(x)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.若命题p为真命题,命题q为假命题,则命题“p且q”为真命题
B.“$sinα=\frac{1}{2}$”是“$α=\frac{π}{6}$”的充分不必要条件
C.l为直线,α,β,为两个不同的平面,若l⊥α,α⊥β,则l∥β
D.命题“?x∈R,2x>0”的否定是“?x0∈R,${2^{x_0}}$≤0”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数轴上点A,B分别对应-1、2,则向量$\overrightarrow{AB}$的长度是(  )
A.-1B.2C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-kx,x∈R,k为常数,e是自然对数的底数.
(Ⅰ)当k=e时,证明f(x)≥0恒成立;
(Ⅱ)若k>0,且对于任意x≥0,f(x)>0恒成立,试确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a9等于-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$sin\frac{2017}{6}π$的值等(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案