精英家教网 > 高中数学 > 题目详情
7.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a9等于-20.

分析 由条件利用(1+x)10=(-1-x)10=[(-2)+(1-x)]10,以及二项展开式的通项公式,求得a9的值.

解答 解:∵(1+x)10=(-1-x)10=[(-2)+(1-x)]10
${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,
∴a9=${C}_{10}^{9}$•(-2)=-20,
故答案为:-20.

点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数 f(x)=kx($\frac{1}{e}$≤x≤e2),与函数$g(x)={(\frac{1}{e})^{\frac{x}{2}}}$,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=x对称,则实数k的取值范围是(  )
A.[-$\frac{1}{e}$,e]B.[-$\frac{2}{e}$,2e]C.(-$\frac{2}{e}$,2e)D.[-$\frac{3}{e}$,3e]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数 f(x)=|3x+1|-|x-4|.
(1)解不等式f(x)<0
(2)若f(x)+4|x-4|>m对一切实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,三棱锥A-BCD的顶点B、C、D在平面α内,CA=AB=BC=CD=DB=4,AD=2$\sqrt{6}$,若将该三棱锥以BC为轴转动,到点A落到平面α内为止,则A、D两点所经过的路程之和是  $2\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=-\frac{4}{3}{x^3}+4{x^2}+12x+a$.
(1)求f(x)的单调递减区间;
(2)若a=-1,求f(x)在区间[-2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知p:2x2-3x-2≥0,q:x2-(2a-2)x+a(a-2)≥0,若p是q的充分不必要条件.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在正六边形ABCDEF,点O为其中心,则下列判断错误的是(  )
A.$\overrightarrow{AB}=\overrightarrow{OC}$B.$\overrightarrow{AB}∥\overrightarrow{DE}$C.$|{\overrightarrow{AD}}|=|{\overrightarrow{BE}}|$D.$|{\overrightarrow{AC}}|=|{\overrightarrow{BE}}|$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线ax+by=1与圆x2+y2=1相交,则点P(a,b)与圆的位置关系是(  )
A.在圆上B.在圆外C.在圆内D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知关于x的方程(t+1)cosx-tsinx=t+2在(0,π)上有实根.则实数t的最大值是-1.

查看答案和解析>>

同步练习册答案