| A. | [-$\frac{1}{e}$,e] | B. | [-$\frac{2}{e}$,2e] | C. | (-$\frac{2}{e}$,2e) | D. | [-$\frac{3}{e}$,3e] |
分析 求出g(x)的反函数h(x),则g(x)与f(x)的图象在[$\frac{1}{e}$,e2]上有交点,借助函数图象及导数的几何意义即可求出k的范围.
解答 解:g(x)=($\frac{1}{e}$)${\;}^{\frac{x}{2}}$=(e${\;}^{-\frac{1}{2}}$)x关于直线y=x的对称函数为h(x)=log${\;}_{{e}^{-\frac{1}{2}}}$x=-2lnx,
则y=h(x)与y=f(x)=kx在[$\frac{1}{e}$,e2]上有交点,
作出y=h(x)与y=f(x)在[$\frac{1}{e}$,e2]上的函数图象如图所示:![]()
设y=k1x经过点($\frac{1}{e}$,2),则k1=2e,
设y=k2x与h(x)=-2lnx相切,切点为(x0,y0),
则$\left\{\begin{array}{l}{-\frac{2}{{x}_{0}}={k}_{2}}\\{{k}_{2}{x}_{0}=-2ln{x}_{0}}\end{array}\right.$,解得x0=e,k2=-$\frac{2}{e}$.
∴$-\frac{2}{e}$≤k≤2e.
故选B.
点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | 5 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,3) | C. | (3,+∞) | D. | (-∞,0)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com