精英家教网 > 高中数学 > 题目详情
17.已知函数 f(x)=kx($\frac{1}{e}$≤x≤e2),与函数$g(x)={(\frac{1}{e})^{\frac{x}{2}}}$,若f(x)与g(x)的图象上分别存在点M,N,使得MN关于直线y=x对称,则实数k的取值范围是(  )
A.[-$\frac{1}{e}$,e]B.[-$\frac{2}{e}$,2e]C.(-$\frac{2}{e}$,2e)D.[-$\frac{3}{e}$,3e]

分析 求出g(x)的反函数h(x),则g(x)与f(x)的图象在[$\frac{1}{e}$,e2]上有交点,借助函数图象及导数的几何意义即可求出k的范围.

解答 解:g(x)=($\frac{1}{e}$)${\;}^{\frac{x}{2}}$=(e${\;}^{-\frac{1}{2}}$)x关于直线y=x的对称函数为h(x)=log${\;}_{{e}^{-\frac{1}{2}}}$x=-2lnx,
则y=h(x)与y=f(x)=kx在[$\frac{1}{e}$,e2]上有交点,
作出y=h(x)与y=f(x)在[$\frac{1}{e}$,e2]上的函数图象如图所示:

设y=k1x经过点($\frac{1}{e}$,2),则k1=2e,
设y=k2x与h(x)=-2lnx相切,切点为(x0,y0),
则$\left\{\begin{array}{l}{-\frac{2}{{x}_{0}}={k}_{2}}\\{{k}_{2}{x}_{0}=-2ln{x}_{0}}\end{array}\right.$,解得x0=e,k2=-$\frac{2}{e}$.
∴$-\frac{2}{e}$≤k≤2e.
故选B.

点评 本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知$\frac{tan(α-γ)}{tanα}$+$\frac{si{n}^{2}β}{si{n}^{2}α}$=1,求证:tan2β=tanαtanγ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如果△ABC内接于单位圆,且$({a^2}-{c^2})=(\sqrt{2}a-b)b$,则△ABC面积的最大值为$\frac{{\sqrt{2}+1}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如果关于x的不等式2kx2+kx-$\frac{3}{8}$<0对一切实数x都成立,那么k的取值范围是(-3,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.非常数数列{an}是等差数列,且{an}的第5、10、20项成等比数列,则此等比数列的公比为(  )
A.$\frac{1}{5}$B.5C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,且过点($\sqrt{3}$,$\frac{1}{2}$).设点A1,B1分别是椭圆的右顶点和上顶点,如图所示过 点A1,B1引椭圆C的两条弦A1E、B1F.
(1)求椭圆C的方程;
(2)若直线A1E与B1F的斜率是互为相反数.
①求直线EF的斜率k0 ②设直线EF的方程为y=k0x+b(-1≤b≤1)设△A1EF、△B1EF的面积分别为S1和S2,求S1+S2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的增函数,若f(a2-a)>f(2a2-4a),则实数a的取值范围是(  )
A.(-∞,0)B.(0,3)C.(3,+∞)D.(-∞,0)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列命题中真命题的序号为(1).
(1)命题“?x>0,x2-x≤0”的否定是“?x>0,x2-x>0.”
(2)若A>B,则sinA>sinB.
(3)已知数列{an},则“an,an+1,an+2成等比数列”是“$a_{n+1}^2={a_n}{a_{n+2}}$”的充要条件
(4)已知函数$f(x)=lgx+\frac{1}{lgx}$,则函数f(x)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a9等于-20.

查看答案和解析>>

同步练习册答案