精英家教网 > 高中数学 > 题目详情
如图,正方形ABCD中,P是对角线BD上的一点,PECF是矩形,用向量证明PA=EF.

思路分析:用向量的坐标法证明,只要写出PA与EF的坐标,利用两点间距离公式就可得证.问题的关键在于如何建立坐标系,考虑到四边形ABCD,故可以D点为坐标原点,以DC、AD边所在直线分别为x、y轴,建立坐标系.

证明:建立如图所示的坐标系,设正方形的边长为a,||=λ(λ>0),

则A(0,a),P(λ,λ),E(a,λ),F(λ,0),

=(λ,a-λ),=(λ-a,λ).

∵||22-aλ+a2,||22-aλ+a2,

∴||2=||2,故PA=EF.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图正方形ABCD-A1B1C1D1的棱长为1,则AD1与B1C所成的角为
 
;三棱锥B1-ABC的体积为
 
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD,ABEF的边长都是1,而且平面ABCD,ABEF互相垂直.点M在AC上移动,点N在BF上移动,若CM=BN=a(0<a<
2
).
(1)求MN的长;
(2)当a为何值时,MN的长最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图正方形ABCD的边长为a,P,Q分别为AB,DA上的点,当△PAQ的周长为2a时,求∠PCQ.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD和四边形ADEF所在的平面垂直,FA⊥AD,DE∥FA,且AD=DE=
12
AF=1
,G是FC的中点.
(1)求证:EG⊥平面ACF;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方形ABCD所在平面与正△PAD所在平面互相垂直,M,Q分别为PC,AD的中点.
(1)求证:PA∥平面MBD;
(2)试问:在线段AB上是否存在一点N,使得平面PCN⊥平面PQB?若存在,试指出点N的位置,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案