精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,则f[f(3)]=2.

分析 根据函数f(x)是分段函数,计算f(3)的值,再求f[f(3)]的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{f(x-1),x>1}\end{array}\right.$,
∴f(3)=f(2)=f(1)=21=2,
∴f[f(3)]=f(2)=f(1)=2.
故答案为:2.

点评 本题考查了根据分段函数的解析式求对应函数值的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知x,y满足约束条件$\left\{{\begin{array}{l}{x≤-1}\\{x-y≥-2}\\{x+y+1≥0}\end{array}}\right.$,则目标函数z=3x+y的取值范围为(  )
A.[-4,-2]B.[-4,+∞)C.[-3,+∞)D.[-3,-2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx-mx,x∈(0,+∞),m∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若对于?x∈[1,+∞),f(x)≤-$\frac{m}{x}$恒成立,求正实数m的取值范围;
(Ⅲ)若函数f(x)有两个不同的零点x1,x2,求证:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=ex+a•e-x+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x))的值域相同,则a的取值范围是(  )
A.a<0B.a≤-1C.0<a≤4D.a<0或0<a≤4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别作它的两条渐近线的平行线,若这4条直线所围成的四边形的周长为8b,则该双曲线的渐近线方程为(  )
A.y=±xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在一次爱心捐款活动中,小李为了了解捐款数额是否和居民自身的经济收入有关,随机调查了某地区的100个捐款居民每月平均的经济收入.在捐款超过100元的居民中,每月平均的经济收入没有达到2000元的有60个,达到2000元的有20个;在捐款不超过100元的居民中,每月平均的经济收入没有达到2000元的有10个.
(Ⅰ)在下图表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额是否超过100元和居民每月平均的经济收入是否达到2000元有关?
(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量居民中,采用随机抽样方法每次抽取1个居民,共抽取3次,记被抽取的3个居民中经济收入达到2000元的人数为X,求P(X=2)和期望EX的值.
每月平均经济收入达到2000元每月平均经济收入没有达到2000元合计
捐款超过
100元
捐款不超
过100元
合计



 当x2≤2.706时,无充分证据判定变量A,B有关联,可以认为两变量无关联;
 当x2>2.706时,有90%的把握判定变量A,B有关联;
 当x2>3.841时,有95%的把握判定变量A,B有关联;
 当x2>6.635时,有99%的把握判定变量A,B有关联.
附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i为虚数单位,m∈R,复数z=(-m2+2m+8)+(m2-8m)i,若z为负实数,则m的取值集合为(  )
A.{0}B.{8}C.(-2,4)D.(-4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}的前n项和${S_n}=-{a_n}-{(\frac{1}{2})^{n-1}}+2$(n∈N*),则数列{an}的通项公式an=$\frac{n}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合U={0,1,2,3,4,5},A={1,2,3},B={x∈Z|x2-5x+4≥0},则A∩(∁UB)=(  )
A.{1,2,3}B.{1,2}C.{2,3}D.{2}

查看答案和解析>>

同步练习册答案