精英家教网 > 高中数学 > 题目详情
15.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x<1}\\{4(x-a)(x-2a),x≥1}\end{array}\right.$若f(x)恰有2个零点,则实数a的取值范围$\frac{1}{2}≤a<1$或a≥2.

分析 ②分别设h(x)=2x-a,g(x)=4(x-a)(x-2a),分两种情况讨论,即可求出a的范围.

解答 解:设h(x)=2x-a,g(x)=4(x-a)(x-2a),
若在x<1时,h(x)=2x-a与x轴有一个交点,
所以a>0,并且当x=1时,h(1)=2-a>0,所以0<a<2,
而函数g(x)=4(x-a)(x-2a)有一个交点,所以2a≥1,且a<1,
所以$\frac{1}{2}$≤a<1,
若函数h(x)=2x-a在x<1时,与x轴没有交点,
则函数g(x)=4(x-a)(x-2a)有两个交点,
当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),
当h(1)=2-a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,
综上所述a的取值范围是$\frac{1}{2}$≤a<1,或a≥2
故答案为:$\frac{1}{2}≤a<1$或a≥2.

点评 本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线a、b,且a∥α,b?α,则(  )
A.a∥bB.a与b相交C.a与b异面D.a与b平行或异面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在各项均为正数的等比数列{an}中,a3=4,a5=16,则a32+2a2a6+a3a7=400.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列说法正确的是(  )
A.a2>b2是a>b的必要条件
B.“若a∈(0,1),则关于x的不等式ax2+2ax+1>0解集为R”的逆命题为真
C.“若a,b不都是偶数,则a+b不是偶数”的否命题为假
D.“已知a,b∈R,若a+b≠3,则a≠2或b≠1”的逆否命题为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题:
(1)一直线上有两点到同一平面的距离相等说明直线与平面平行;
(2)与同一直线所成角相等的两平面平行;
(3)与两两异面的三直线都相交的直线有无数条;
(4)四面体的四个面都可能是直角三角形;
以上命题正确的是:(3)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,右准线为l,若椭圆上存在点M,满足它到点F的距离是其到l的距离的$\frac{3}{2}$倍,则椭圆的离心率的取值范围为[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow{a}$、$\overrightarrow{b}$是不共线的两个向量,$\overrightarrow{AB}$=x$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{a}$+y$\overrightarrow{b}$(x,y∈R),若A、B、C三点共线,则点P(x,y)的轨迹是(  )
A.直线B.双曲线C.D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=alnx+$\frac{1}{x}$(a≠0),若{x|f(x)≤0}={b,c}(其中b,c∈R,且b<c),则实数a的取值范围为(e,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在区间(0,6)上随机取一个数x,log2x的值介于0到2之间的概率为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案