【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|
),y=f(x)的图象关于直线x
对称,且与x轴交点的横坐标构成一个公差为
的等差数列,则函数f(x)的导函数
的一个单调减区间为( )
A.[
,
]B.[
,
]C.[
,
]D.[
,
]
科目:高中数学 来源: 题型:
【题目】统计与人类活动息息相关,我国从古代就形成了一套关于统计和整理数据的方法.据宋元时代学者马端临所著的《文献通考》记载,宋神宗熙宁年间(公元1068-1077年),天下诸州商税岁额:四十万贯以上者三,二十万贯以上者五,十万贯以上者十九……五千贯以下者七十三,共计三百十一.由这段内容我们可以得到如下的统计表格:
分组(万贯) |
|
|
|
|
|
|
|
| 合计 |
合计 | 73 | 35 | 95 | 51 | 30 | 19 | 5 | 3 | 311 |
则宋神宗熙宁年间各州商税岁额(单位:万贯)的中位数大约为( )
A.0.5B.2C.5D.10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆规是用来画椭圆的一种器械,它的构造如图所示,在一个十字形的金属板上有两条互相垂直的导槽,在直尺上有两个固定的滑块A,B,它们可分别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一周,则点M的轨迹C是一个椭圆,其中|MA|=2,|MB|=1,如图,以两条导槽的交点为原点O,横槽所在直线为x轴,建立直角坐标系.
![]()
(1)将以射线Bx为始边,射线BM为终边的角xBM记为φ(0≤φ<2π),用
表示点M的坐标,并求出C的普通方程;
(2)已知过C的左焦点F,且倾斜角为α(0≤α
)的直线l1与C交于D,E两点,过点F且垂直于l1的直线l2与C交于G,H两点.当
,|GH|,
依次成等差数列时,求直线l2的普通方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知中心在原点,焦点在
轴上的椭圆的一个焦点为
,
是椭圆上一点.
![]()
(1)求椭圆的标准方程;
(2)设椭圆的上下顶点分别为
,
,
是椭圆上异于![]()
的任意一点,
轴,
为垂足,
为线段
的中点,直线
交直线
于点
,
为线段
的中点.
①求证:
;
②若
的面积为
,求
的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)
.
(1)若x=1是函数f(x)的一个极值点,求k的值及f(x)单调区间;
(2)设g(x)=(x+1)ln(x+1)+f(x),若g(x)在[0,+∞)上是单调增函数,求实数k的取值范围;
(3)证明:当p>0,q>0及m<n(m,n∈N*)时,![]()
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l过定点P(0,1),且与直线l1:x-3y+10=0,l2:2x+y-8=0分别交于A、B两点.若线段AB的中点为P,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,AD⊥PD,点F为棱PD的中点.
![]()
(1)在棱BC上是否存在一点E,使得CF∥平面PAE,并说明理由;
(2)若AC⊥PB,二面角D﹣FC﹣B的余弦值为
时,求直线AF与平面BCF所成的角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com