【题目】如图,已知中心在原点,焦点在
轴上的椭圆的一个焦点为
,
是椭圆上一点.
![]()
(1)求椭圆的标准方程;
(2)设椭圆的上下顶点分别为
,
,
是椭圆上异于![]()
的任意一点,
轴,
为垂足,
为线段
的中点,直线
交直线
于点
,
为线段
的中点.
①求证:
;
②若
的面积为
,求
的值;
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率
,椭圆上的点到左焦点
的距离的最大值为
.
(1)求椭圆
的标准方程;
(2)已知直线
与椭圆
交于
、
两点.在
轴上是否存在点
,使得
且
,若存在,求出实数
的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与函数
(
)的图象相交,将其中三个相邻交点从左到右依次记为A,B,C,且满足![]()
有下列结论:
①n的值可能为2
②当
,且
时,
的图象可能关于直线
对称
③当
时,有且仅有一个实数ω,使得
在
上单调递增;
④不等式
恒成立
其中所有正确结论的编号为( )
A.③B.①②C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,图(a)、图(b)是边长为
的两块正方形钢板,现要将图(a)裁剪焊接成一个正四棱柱,将图(b)裁剪焊接成一个正四棱锥,使它们的全面积都等于这个正方形的面积(不计焊接缝的面积).
![]()
(1)将裁剪方法用虚线标示在图中,并作简要说明;
(2)比较所制成的正四棱柱和正四棱锥体积大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|
),y=f(x)的图象关于直线x
对称,且与x轴交点的横坐标构成一个公差为
的等差数列,则函数f(x)的导函数
的一个单调减区间为( )
A.[
,
]B.[
,
]C.[
,
]D.[
,
]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,由
经过伸缩变换
得到曲线
,以原点为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程以及曲线
的直角坐标方程;
(2)若直线
的极坐标方程为
,
与曲线
、曲线
在第一象限交于
、
,且
,点
的极坐标为
,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com