【题目】已知点A(1,a),圆x2+y2=4.
(1)若过点A的圆的切线只有一条,求a的值及切线方程;
(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为,求a的值.
【答案】(1)详见解析;(2) a=±-1.
【解析】试题分析:若过点A的圆的切线只有一条,说明点在圆上,点A的坐标满足圆的方程求出;由于直线在两坐标轴上的截距相等,所以可用直线的截距式巧设直线的方程;求圆的弦长,一般先求出圆心到直线的距离,然后利用勾股定理计算弦长,利用待定系数法,列方程,解方程组求出.
试题解析:(1)由于过点A的圆的切线只有一条,则点A在圆上,故12+a2=4,∴a=±.
当a=时,A(1, ),切线方程为x+y-4=0;
当a=-时,A(1,- ),切线方程为x-y-4=0,
∴a=时,切线方程为x+y-4=0,
a=-时,切线方程为x-y-4=0.
(2)设直线方程为 x+y=b,
由于直线过点A,∴1+a=b,a=b-1.
又圆心到直线的距离d=,
∴()2+()2=4.
∴b=± .∴a=±-1.
科目:高中数学 来源: 题型:
【题目】已知点P(2,0),且圆C:x2+y2﹣6x+4y+4=0.
(Ⅰ)当直线过点P且与圆心C的距离为1时,求直线的方程;
(Ⅱ)设过点P的直线与圆C交于A、B两点,若|AB|=4,求以线段AB为直径的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为选拔参加“全市高中数学竞赛”的选手,某中学举行了一次“数学竞赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).
(1)求样本容和频率分布直方图中的值并求出抽取学生的平均分;
(2)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生参加“全市中数学竞赛”求所抽取的名学生中至少有一人得分在内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某城市有一块半径为40 m的半圆形绿化区域(以O 为圆心,AB为直径),现计划对其进行改建.在AB的延长线上取点D,OD=80 m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2.设∠AOC=x rad.
(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
(Ⅰ)根据频率分布直方图填写下面2×2列联表;
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
(1)求圆A的方程;
(2)当|MN|=2时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过微克/立方米,的24小时平均浓度不得超过微克/立方米.某城市环保部门随机抽取了一居民区去年20天的24小时平均浓度的监测数据,数据统计如下:
组别 | 浓度 (微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(1)从样本中的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天
的24小时平均浓度超过75微克/立方米的概率;
(2)求样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑,判断该居民区的环境是
否需要改进?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com