精英家教网 > 高中数学 > 题目详情

【题目】如图,已知以点A(-1,2)为圆心的圆与直线l1x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于MN两点,QMN的中点,直线ll1相交于点P.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

【答案】(1) (x+1)2+(y-2)2=20;(2) x=-2或3x-4y+6=0.

【解析】试题分析:(1)利用圆心到切线的距离等于半径求得 ;(2)先检验当直线斜率不存在时 符合题意;当直线斜率存在是,设其方程为: ,再利用点到直线的距离公式和弦长公式,即可求得 ,从而求得另一条直线.

试题解析:(1)设圆A的半径为R.

由于圆A与直线l1x+2y+7=0相切,

R=2.

∴圆A的方程为(x+1)2+(y-2)2=20.

(2)①当直线lx轴垂直时,易知x=-2符合题意;

②当直线l的斜率存在时,设直线l的方程为yk(x+2).

kxy+2k=0.

连接AQ,则AQMN.

∵|MN|=2,∴|AQ|==1,

则由|AQ|==1,

k,∴直线l:3x-4y+6=0.

故直线l的方程为x=-2或3x-4y+6=0.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,是底面边长为2,高为的正三棱柱,经过AB的截面与上底面相交于PQ, .

证明:

时,求点C到平面APQB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

(1)求数列的通项公式,并写出推理过程;

(2)令,试比较的大小,并给出你的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(1,a),圆x2y2=4.

(1)若过点A的圆的切线只有一条,求a的值及切线方程;

(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:

(1)求表中的值和频率分布直方图中的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;

(2)如果用分层抽样的方法从样本服务次数在的人中共抽取6人,再从这6人中选2人,求2人服务次数都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).

6

7

6

7

8

5

6

7

8

(1)试估计班学生人数;

(2)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, ,AB=2CD=8.

(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;

(2)当M点位于线段PC什么位置时,PA∥平面MBD?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.

(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;

(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数, 是自然对数的底数),曲线在点处的切线方程是.

(1)求的值;(2)求的单调区间;

(3)设(其中的导函数)。证明:对任意

查看答案和解析>>

同步练习册答案