【题目】已知函数
(
为常数,
是自然对数的底数),曲线
在点
处的切线方程是
.
(1)求
的值;(2)求
的单调区间;
(3)设
(其中
为
的导函数)。证明:对任意
, ![]()
科目:高中数学 来源: 题型:
【题目】如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
![]()
(1)求圆A的方程;
(2)当|MN|=2
时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(Ⅰ)当
时,求函数
的极小值;
(Ⅱ)当
时,过坐标原点
作曲线
的切线,设切点为
,求实数
的值;
(Ⅲ)设定义在
上的函数
在点
处的切线方程为
:
,当
时,若
在
内恒成立,则称
为函数
的“转点”.当
时,试问函数
是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
满足
,其中
,
.
(1)求
,
,
,并猜想
的表达式(不必写出证明过程);
(2)设
,数列
的前
项和为
,求证:
.
(B)已知数列
的前
项和为
,且满足
,
.
(1)求
,
,
,
,并猜想
的表达式(不必写出证明过程);
(2)设
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(A)已知数列
满足
,其中
,
.
(1)求
,
,
,并猜想
的表达式(不必写出证明过程);
(2)由(1)写出数列
的前
项和
,并用数学归纳法证明.
(B)已知数列
的前
项和为
,且满足
,
.
(1)猜想
的表达式,并用数学归纳法证明;
(2)设
,
,求
的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com