【题目】已知函数在处的切线方程为.
(1)求的值;
(2)求函数的极值.
(3)若在是单调函数,求的取值范围
科目:高中数学 来源: 题型:
【题目】已知点A(1,a),圆x2+y2=4.
(1)若过点A的圆的切线只有一条,求a的值及切线方程;
(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.
(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.
(1)求椭圆的方程;
(2)若分别是椭圆长轴的左、右端点,动点满足,连结,交椭圆于点,证明:为定值;
(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,
(1)求函数的单调递减区间;
(2)若关于的方程在区间上有两个不等的根,求实数的取值范围;
(3)若存在,当时,恒有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).
(1) 求向量b+c的模的最大值;
(2) 若α=,且a⊥(b+c),求cos β的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(为常数, 是自然对数的底数),曲线在点处的切线方程是.
(1)求的值;(2)求的单调区间;
(3)设(其中为的导函数)。证明:对任意,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:某污水处理厂要在一个矩形污水处理池()的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长污水净化效果越好,设计要求管道的的接口是的中点,分别落在线段上。已知米,米,记.
(1)试将污水净化管道的长度表示为的函数,并写出定义域;
(2)若,求此时管道的长度;
(3)当取何值时,污水净化效果最好?并求出此时管道的长度。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于空间直角坐标系中的一点,有下列说法:
①点到坐标原点的距离为;
②的中点坐标为;
③点关于轴对称的点的坐标为;
④点关于坐标原点对称的点的坐标为;
⑤点关于坐标平面对称的点的坐标为.
其中正确的个数是
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com