精英家教网 > 高中数学 > 题目详情

【题目】已知函数处的切线方程为.

1的值;

2求函数的极值.

3是单调函数,求的取值范围

【答案】12的极大值为,无极小值3

【解析】

试题分析:1因为,所以

而函数处的切线方程为,所以即可求出结果.21,当时,;当时,;所以上单调递增,上单调递减,由此可求出结果;3,则又由;若,所以有,所以,若,所以有,由此即可求出结果.

试题解析:1因为,所以

而函数处的切线方程为

所以,所以

21

时,;当时,

所以上单调递增,上单调递减,

所以有极大值,无极小值.

的极大值为,无极小值

3,则

又由

所以有

,所以

所以有

,所以

故综上

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点A(1,a),圆x2y2=4.

(1)若过点A的圆的切线只有一条,求a的值及切线方程;

(2)若过点A且在两坐标轴上截距相等的直线被圆截得的弦长为,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个不透明的箱子,每个箱子都装有4个完全相同的小球,球上分别标有数字1,2,3,4.

(1)甲从其中一个箱子中摸出一个球,乙从另一个箱子摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;

(2)摸球方法与(1)同,若规定:两人摸到的球上所标数字相同甲获胜,所标数字不相同则乙获胜,这样规定公平吗?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.

(1)求椭圆的方程;

(2)若分别是椭圆长轴的左、右端点,动点满足,连结,交椭圆于点,证明:为定值;

(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调递减区间;

2若关于的方程在区间上有两个不等的根,求实数的取值范围;

3若存在,当时,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).

(1) 求向量bc的模的最大值;

(2) 若α=,且a⊥(bc),求cos β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数, 是自然对数的底数),曲线在点处的切线方程是.

(1)求的值;(2)求的单调区间;

(3)设(其中的导函数)。证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:某污水处理厂要在一个矩形污水处理池(的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长污水净化效果越好,设计要求管道的的接口的中点,分别落在线段上。已知米,米,记.

1试将污水净化管道的长度表示为的函数,并写出定义域;

2,求此时管道的长度

3取何值时,污水净化效果最好?并求出此时管道的长度。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于空间直角坐标系中的一点,有下列说法:

①点到坐标原点的距离为

的中点坐标为

③点关于轴对称的点的坐标为

④点关于坐标原点对称的点的坐标为

⑤点关于坐标平面对称的点的坐标为.

其中正确的个数是

A. B. C. D.

查看答案和解析>>

同步练习册答案