精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足,其中 .

(1)求 ,并猜想的表达式(不必写出证明过程);

(2)设,数列的前项和为,求证: .

(B)已知数列的前项和为,且满足 .

(1)求 ,并猜想的表达式(不必写出证明过程);

(2)设 ,求的最大值.

【答案】(A)(1)详见解析;(2)详见解析. (B)(1)详见解析;(2).

【解析】试题分析:(A)(1)利用的递推关系得到,从而求得,由此猜想.(2)将的表达式代入,求得,用裂项求和法求得前项和.(B)利用,和的递推关系,可求得的值,由此猜想.(2)利用,可求得的通项公式,代入并化简,利用基本不等式可求得其最大值.

试题解析:

(A)解(1)由题意,

猜想得: .

(2)由(1)得

.

(B)解(1)

,得

同理可得

猜想: .

(2)由(1),时,

时, 满足止式,

所以

,则有上为减函数,在上为增函数,

因为,且

所以当时, 有最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).

6

7

6

7

8

5

6

7

8

(1)试估计班学生人数;

(2)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形.

(1)求椭圆的方程;

(2)若分别是椭圆长轴的左、右端点,动点满足,连结,交椭圆于点,证明:为定值;

(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=(cos α,sin α),b=(cos β,sin β),c=(-1,0).

(1) 求向量bc的模的最大值;

(2) 若α=,且a⊥(bc),求cos β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数, 是自然对数的底数),曲线在点处的切线方程是.

(1)求的值;(2)求的单调区间;

(3)设(其中的导函数)。证明:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)loga(ax2x1)(a0a1)

(1) a求函数f(x)的值域.

(2) f(x)在区间上为增函数时a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:某污水处理厂要在一个矩形污水处理池(的池底水平铺设污水净化管道(是直角顶点)来处理污水,管道越长污水净化效果越好,设计要求管道的的接口的中点,分别落在线段上。已知米,米,记.

1试将污水净化管道的长度表示为的函数,并写出定义域;

2,求此时管道的长度

3取何值时,污水净化效果最好?并求出此时管道的长度。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏,将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随机从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

(2)若参赛选手共6万人,用频率估计概率,试估计其中优秀等级的选手人数;

(3)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究性学习中,关于三角形与三角函数知识的应用(约定三内角所对的边分别是)得出如下一些结论:

1是钝角三角形,则

(2)若是锐角三角形,则

(3)在三角形中,若,则

(4)在中,若,则

其中错误命题的个数是 ( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步练习册答案