【题目】已知三个班共有学生100人,为调查他们的体育锻炼情况,通过分层抽样获取了部分学生一周的锻炼时间,数据如下表(单位:小时).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(1)试估计班学生人数;
(2)从班和班抽出来的学生中各选一名,记班选出的学生为甲,班选出的学生为乙,求甲的锻炼时间大于乙的锻炼时间的概率.
科目:高中数学 来源: 题型:
【题目】设f(x)= (m>0,n>0).
(1) 当m=n=1时,求证:f(x)不是奇函数;
(2) 设f(x)是奇函数,求m与n的值;
(3) 在(2)的条件下,求不等式f(f(x))+f <0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某城市有一块半径为40 m的半圆形绿化区域(以O 为圆心,AB为直径),现计划对其进行改建.在AB的延长线上取点D,OD=80 m,在半圆上选定一点C,改建后的绿化区域由扇形区域AOC和三角形区域COD组成,其面积为S m2.设∠AOC=x rad.
(1)写出S关于x的函数关系式S(x),并指出x的取值范围;
(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.
(1)求圆A的方程;
(2)当|MN|=2时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, ,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家环保部新修订的《环境空气质量标准》规定:居民区的年平均浓度不得超过微克/立方米,的24小时平均浓度不得超过微克/立方米.某城市环保部门随机抽取了一居民区去年20天的24小时平均浓度的监测数据,数据统计如下:
组别 | 浓度 (微克/立方米) | 频数(天) | 频率 |
第一组 | 3 | 0.15 | |
第二组 | 12 | 0.6 | |
第三组 | 3 | 0.15 | |
第四组 | 2 | 0.1 |
(1)从样本中的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天
的24小时平均浓度超过75微克/立方米的概率;
(2)求样本平均数,并根据样本估计总体的思想,从的年平均浓度考虑,判断该居民区的环境是
否需要改进?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,其中, .
(1)求, , ,并猜想的表达式(不必写出证明过程);
(2)设,数列的前项和为,求证: .
(B)已知数列的前项和为,且满足, .
(1)求, , , ,并猜想的表达式(不必写出证明过程);
(2)设, ,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com