精英家教网 > 高中数学 > 题目详情

【题目】如图所示正方体ABCDABCD′的棱长为1EF分别是棱AACC′的中点过直线EF的平面分别与棱BBDD′分别交于MN两点BMxx[0,1]给出以下四个结论:

①平面MENF⊥平面BDDB

②直线AC∥平面MENF始终成立;

③四边形MENF周长Lf(x)x[0,1]是单调函数;

④四棱锥CMENF的体积Vh(x)为常数;

以上结论正确的是__________

【答案】①②④

【解析】连接,则,而,又平面 平面 ,所以 ,由,所以平面 平面,故平面 ①正确;由前述证明可知平面 平面,故平面②也成立;四边形为菱形, ,它不是单调函数,故③错; 到平面的距离为1, ,故为定值故填①②④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.

(1)若销售金额(单位:万元)不低于平均值的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?

(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆右顶点与右焦点的距离为,短轴长为

I)求椭圆的方程;

)过左焦点F的直线与椭圆分别交于AB两点,若三角形OAB的面积为求直线AB的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°,点OAB上,且OBOCABPO⊥平面ABCDAPODAAOPO.

(1)求证:PB∥平面COD

(2)求二面角OCDA的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品”的规定?

(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知矩形所在平面垂直于直角梯形所在平面于直线,且

)设点为棱中点,求证: 平面

)线段上是否存在一点,使得直线与平面所成角的正弦值等于?若存在,试确定点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)证明: 图象恒在直线的上方;

(2)若恒成立,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016·云南玉溪一中月考)已知函数,函数g(x)=f(x)-x+1的零点按从小到大的顺序排列成一个数列,该数列的前n项的和为Sn,则S10等于(  )

A. 45 B. 55

C. 210-1 D. 29-1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,棱底面,且, , , 的中点.

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案