精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,直线l与抛物线y2=2x相交于A、B两点.
(1)求证:“如果直线l过点T(3,0),那么
OA
OB
=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
分析:(1)设出A,B两点的坐标根据向量的点乘运算求证即可,
(2)把(1)中题设和结论变换位置然后设出A,B两点的坐标根据向量运算求证即可.
解答:解:(1)设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y1)、B(x2,y2).
当直线l的钭率不存在时,直线l的方程为x=3,
此时,直线l与抛物线相交于点A(3,
6
)、B(3,-
6
).
OA
OB
=3;
当直线l的钭率存在时,设直线l的方程为y=k(x-3),其中k≠0,
y2=2x
y=k(x-3)
得ky2-2y-6k=0?y1y2=-6
又∵x1=
1
2
y12x2=
1
2
y22

OA
OB
=x1x2+y1y2=
1
4
(y1y2)2+y1y2=3

综上所述,命题“如果直线l过点T(3,0),那么
OA
OB
=3”是真命题;
(2)逆命题是:设直线l交抛物线y2=2x于A、B两点,
如果
OA
OB
=3,那么该直线过点T(3,0).该命题是假命题.
例如:取抛物线上的点A(2,2),B(
1
2
,1),
此时
OA
OB
=3,
直线AB的方程为:y=
2
3
(x+1)
,而T(3,0)不在直线AB上;
说明:由抛物线y2=2x上的点A(x1,y1)、B(x2,y2)满足
OA
OB
=3,可得y1y2=-6,
或y1y2=2,如果y1y2=-6,可证得直线AB过点(3,0);如果y1y2=2,可证得直线
AB过点(-1,0),而不过点(3,0).
点评:本题考查了真假命题的证明,但要知道向量点乘运算的知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案