精英家教网 > 高中数学 > 题目详情
14.如图所示,已知过抛物线x2=2py(p>0)的焦点F的直线l与抛物线相交于A,B两点
(1)若A(x1,3)到焦点F的距离为4,求抛物线的方程;
(2)若抛物线方程为x2=4y,在A,B两点处的切线相交于点M,若点M的横坐标为2,求△ABM的外接圆方程.

分析 (1)利用抛物线的定义求出p,即可求抛物线的方程;
(2)设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).与抛物线方程联立化为x2-4kx-4=0,可得根与系数的关系,由x2=4y,可得y′=$\frac{1}{2}$x.可得kMA•kMB=$\frac{{x}_{1}{x}_{2}}{4}$=-1,可得△MAB为直角三角形,可得△MAB的外接圆的圆心为线段AB的中点.设线段AB的中点为P,可得⊙P与抛物线的准线相切,切点为点M,利用中点坐标公式与根与系数的关系可得圆心P(2,3),半径r=|MP|=|3-(-1)|=4,即可得出所求的△MAB的外接圆的方程.

解答 解:(1)抛物线x2=2py的准线方程为y=-$\frac{p}{2}$,
∵A(x1,3)到焦点F的距离为4,
∴3+$\frac{p}{2}$=4,
∴p=2,
∴抛物线的方程为x2=4y;
(2)设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2).
代入x2=4y,化为x2-4kx-4=0,
∴x1+x2=4k,x1x2=-4.
由x2=4y,可得y′=$\frac{1}{2}$x.
∴kMA•kMB=$\frac{{x}_{1}{x}_{2}}{4}$=-1,
∴MA⊥MB.
∴△MAB为直角三角形,∴△MAB的外接圆的圆心为线段AB的中点.
设线段AB的中点为P,可得⊙P与抛物线的准线相切,切点为点M.
∴xP=xM=2,
∴$\frac{{x}_{1}+{x}_{2}}{2}$=2,2k=2,解得k=1.
yp=$\frac{{x}_{1}+{x}_{2}+2}{2}$=3,
∴圆心P(2,3),又r=|MP|=|3-(-1)|=4,
∴所求的△MAB的外接圆的方程为:(x-2)2+(y-3)2=16.

点评 本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题转化为方程联立可得根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某校为了选拔学生参加体育比赛,对5名学生的体能和心理进行了测评,成绩(单位:分)如下表:
学生编号i 
 体能成绩x80 75 70 65 60 
 心理成绩y 7066 68 64 62 
(1)在本次测评中,规定体能成绩70分以上(含70分)且心理成绩65分以上(含65分)为优秀成绩,从这5名学生中任意抽取2名学生,设X表示成绩优秀的学生人数,求X的分布列和数学期望;
(2)假设学生的体能成绩和心理成绩具有线性相关关系,根据上表利用最小二乘法,求y与x的回归直线方程,(参考数据:$\underset{\stackrel{5}{∑}}{i=1}$xiyi=23190,$\underset{\stackrel{5}{∑}}{i=1}$xi2=24750).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求与圆:(x+1)2+y2=1,外切且与y轴相切的动圆的圆心轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=x2-4x+3,g(x)=3x-2,集合M={x∈R|f(g(x))>0},N={x∈R|g(x)<2},则M∩N为(  )
A.(1,+∞)B.(0,1)C.(-1,1)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设tanα=3,计算:
(1)$\frac{sinα+cosα}{sinα-cosα}$;
(2)$\frac{1}{si{n}^{2}α-sinαcosα-2co{s}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.抛物线y2=8x上一点P到焦点的距离为6,在y轴上的射影为Q,O为原点,则四边形OFPQ的面积等于12$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设Sn是正项数列{an}的前n项和,且Sn=$\frac{1}{2}$an2+$\frac{1}{2}$an-1(n∈N*)
(1)设数列{an}的通项公式;
(2)若bn=2n,设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图是一个水平放置的直观图,它是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积为(  )
A.2+$\sqrt{2}$B.$\frac{{1+\sqrt{2}}}{2}$C.$\frac{{2+\sqrt{2}}}{2}$D.1+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设C是∠AOB所在平面外的一点,若∠AOB=∠BOC=∠AOC=θ,其中θ是锐角,而OC与平面AOB所成角的余弦值等于$\frac{\sqrt{3}}{3}$,则θ的值为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

同步练习册答案