【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)求使f(x)﹣g(x)>0的x的取值范围.
【答案】(1)(﹣1,1); (2)(0,1).
【解析】
(1)利用对数的真数大于零列不等式组求解即可;(2)根据对数函数的单调性,结合函数的定义域可得,解不等式组可得结果.
(1)∵f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
∴f(x)﹣g(x)=loga(1+x)﹣loga(1﹣x),(a>1).
要使函数f(x)﹣g(x)有意义,则 ,解得﹣1<x<1,
即函数f(x)﹣g(x)的定义域为(﹣1,1).
(2)由f(x)﹣g(x)>0得f(x)>g(x),
即loga(1+x)>loga(1﹣x),
因为a>1,则 ,即,解得0<x<1.
不等式的解集为(0,1).
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为锐角△ABC三个内角A,B,C的对边,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大小;
(Ⅱ)若f(x)= sin cos +cos2 ,求f(B)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,若面积为,求直线的方程.
【答案】(Ⅰ)(Ⅱ)或
【解析】试题分析:(Ⅰ)由题意得,再由 椭圆的方程为;(Ⅱ)①当直线斜率不存在时,不妨取面积为 ,不符合题意. ②当直线斜率存在时,设直线, 由 得 ,再求点的直线的距离 点到直线的距离为面积为 ∴或 所求方程为或.
试题解析:
(Ⅰ)由题意得,∴,
∵,∴,
∴椭圆的方程为.
(Ⅱ)①当直线斜率不存在时,不妨取,
∴面积为 ,不符合题意.
②当直线斜率存在时,设直线,
由化简得,
设,
∴ ,
∵点的直线的距离,
又是线段的中点,∴点到直线的距离为,
∴面积为 ,
∴,∴,∴,∴或,
∴直线的方程为或.
【题型】解答题
【结束】
25
【题目】已知函数.
(Ⅰ)求函数的单调区间与极值;
(Ⅱ)若,且,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别是a,b,c,点(a,b)在4xcosB﹣ycosC=ccosB上.
(1)cosB的值;
(2)若 =3,b=3 ,求a和c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图放置的边长为2的正三角形ABC沿x轴滚动,记滚动过程中顶点A的横、纵坐标分别为和,且是在映射作用下的象,则下列说法中:
① 映射的值域是;
② 映射不是一个函数;
③ 映射是函数,且是偶函数;
④ 映射是函数,且单增区间为,
其中正确说法的序号是___________.
说明:“正三角形ABC沿x轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在x轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形ABC可以沿x轴负方向滚动.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B均为锐角,则cosA>sinB是△ABC为钝角三角形的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的一年收益与投资额成正比,其关系如图(1);投资股票等风险型产品的一年收益与投资额的算术平方根成正比,其关系如图(2).(注:收益与投资额单位:万元)
(1)分别写出两种产品的一年收益与投资额的函数关系;
(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使一年的投资获得最大收益,其最大收益是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com