【题目】已知椭圆
的左、右两个焦点分别为
,离心率
,短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点
为椭圆上的一动点(非长轴端点),
的延长线与椭圆交于
点,
的延长线与椭圆交于
点,若
面积为
,求直线
的方程.
【答案】(Ⅰ)
(Ⅱ)
或![]()
【解析】试题分析:(Ⅰ)由题意得
,再由
椭圆的方程为
;(Ⅱ)①当直线
斜率不存在时,不妨取
面积为
,不符合题意. ②当直线
斜率存在时,设直线
, 由
得
,再求点
的直线
的距离
点
到直线
的距离为
面积为
∴
或
所求方程为
或
.
试题解析:![]()
(Ⅰ)由题意得
,∴
,
∵
,∴
,
∴椭圆的方程为
.
(Ⅱ)①当直线
斜率不存在时,不妨取
,
∴
面积为
,不符合题意.
②当直线
斜率存在时,设直线
,
由
化简得
,
设
,
∴
,
∵点
的直线
的距离
,
又
是线段
的中点,∴点
到直线
的距离为
,
∴
面积为
,
∴
,∴
,∴
,∴
或
,
∴直线
的方程为
或
.
【题型】解答题
【结束】
25
【题目】已知函数
.
(Ⅰ)求函数
的单调区间与极值;
(Ⅱ)若
,且
,证明:
.
科目:高中数学 来源: 题型:
【题目】已知函数
,若同时满足以下条件:
①
在D上单调递减或单调递增;
②存在区间
,使
在
上的值域是
,那么称
为闭函数.
(1)求闭函数
符合条件②的区间
;
(2)判断函数
是不是闭函数?若是请找出区间
;若不是请说明理由;
(3)若
是闭函数,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx+2x-6。
(1)证明:函数f(x)在其定义域上是增函数;
(2)证明:函数f(x)有且只有一个零点;
(3)求这个零点所在的一个区间,使这个区间的长度不超过
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某自行车厂为共享单车公司生产新样式的单车,已知生产新样式单车的固定成本为20000元,每生产一件新样式单车需要增加投入100元.根据初步测算,自行车厂的总收益(单位:元)满足分段函数h(x),其中
,x是新样式单车的月产量(单位:件),利润=总收益﹣总成本.
(1)试将自行车厂的利润y元表示为月产量x的函数;
(2)当月产量为多少件时自行车厂的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.
(Ⅰ)求实数a,b的值;
(Ⅱ)设函数g(x)=
,若不等式g(2x)﹣k2x≤0在x∈[﹣1,1]上恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga(1+x),g(x)=loga(1﹣x),(a>1).
(1)求函数h(x)=f(x)﹣g(x)的定义域;
(2)求使f(x)﹣g(x)>0的x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数f(x)=
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N* , 且n≥2),令集合M={x|f2036(x)=x,x∈R},则集合M为( )
A.空集
B.实数集
C.单元素集
D.二元素集
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是( )
A.
, ![]()
B.
, ![]()
C.
, ![]()
D.
, ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com