精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.

Ⅰ)求实数a,b的值;

Ⅱ)设函数g(x)=,若不等式g(2x)﹣k2x≤0x[﹣1,1]上恒成立,求实数k的取值范围.

【答案】(1)a=1,b=0;(2)

【解析】

(Ⅰ)时,在区间上单调递增,可得,解出即可;(Ⅱ)由(Ⅰ)可得原题可化为,分离参数,令,求出的最大值即可

解:(Ⅰ)f(x)=ax2﹣2ax+1+b=a(x﹣1)2+1+b﹣a.

a>0,f(x)在区间[2,3]上单调递增,

,解得a=1,b=0;

Ⅱ)由(Ⅰ)知,f(x)=x2﹣2x+1,

g(x)==

不等式g(2x)﹣k2x≤0可化为

k

t=

x[﹣1,1],t[,2],

h(t)=t2﹣2t+1=(t﹣1)2,t[,2],

∴当t=2时,函数取得最大值h(2)=1.

k≥1.

∴实数k的取值范围为[1,+∞).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列 中,公差 , ,且 成等比数列.
(1)求数列 的通项公式;
(2)若 为数列 的前 项和,且存在 ,使得 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上的奇函数,求实数a的值;

(2)函数为减函数,求实数a的取值范围;

(3)是否存在实数(),使得 在闭区间上的最大值为2,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数上是单调递增函数,则的取值范围是______.

【答案】

【解析】

又函数单调递增,

上恒成立,

上恒成立。

又当时,

故实数的取值范围是

答案

点睛对于导函数和函数单调性的关系要分清以下结论:

1)当时,若在区间D上单调递增);

2)若函数在区间D上单调递增),在区间D上恒成立即解题时可将函数单调性的问题转化为的问题,但此时不要忘记等号

型】填空
束】
19

【题目】某珠宝店丢了一件珍贵珠宝,以下四人中只有一人说真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,若面积为,求直线的方程.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(Ⅰ)由题意得,再由 椭圆的方程为;(Ⅱ)①当直线斜率不存在时,不妨取面积为 ,不符合题意. ②当直线斜率存在时,设直线, 由 ,再求点的直线的距离 到直线的距离为面积为 所求方程为.

试题解析:

(Ⅰ)由题意得,∴

,∴

∴椭圆的方程为.

(Ⅱ)①当直线斜率不存在时,不妨取

面积为 ,不符合题意.

②当直线斜率存在时,设直线

化简得

∵点的直线的距离

是线段的中点,∴点到直线的距离为

面积为

,∴,∴,∴

∴直线的方程为.

型】解答
束】
25

【题目】已知函数.

(Ⅰ)求函数的单调区间与极值

(Ⅱ)若证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面ABEF⊥平面ABC,四边形ABEF为矩形,AC=BC.O为AB的中点,OF⊥EC. (Ⅰ)求证:OE⊥FC:
(Ⅱ)若 = 时,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图放置的边长为2的正三角形ABC沿x轴滚动,记滚动过程中顶点A的横、纵坐标分别为,且在映射作用下的象,则下列说法中:

映射的值域是

映射不是一个函数;

映射是函数,且是偶函数;

映射是函数,且单增区间为

其中正确说法的序号是___________.

说明:“正三角形ABC沿x轴滚动包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点B为中心顺时针旋转,当顶点C落在x轴上时,再以顶点C为中心顺时针旋转,如此继续.类似地,正三角形ABC可以沿x轴负方向滚动.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义域为的奇函数,当.

(Ⅰ)求出函数上的解析式;

(Ⅱ)在答题卷上画出函数的图象,并根据图象写出的单调区间;

(Ⅲ)若关于的方程有三个不同的解,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是(
A.[ ,+∞)
B.[ ,+∞)
C.[ ,+∞)
D.[ ,+∞)

查看答案和解析>>

同步练习册答案