【题目】当|a|≤1,|x|≤1时,关于x的不等式|x2﹣ax﹣a2|≤m恒成立,则实数m的取值范围是( )
A.[ ,+∞)
B.[ ,+∞)
C.[ ,+∞)
D.[ ,+∞)
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.
(Ⅰ)求实数a,b的值;
(Ⅱ)设函数g(x)=,若不等式g(2x)﹣k2x≤0在x∈[﹣1,1]上恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1处取得极值,求a的值;
(Ⅱ)若f(x)在区间(1,2)上单调递增,求a的取值范围;
(Ⅲ)讨论函数g(x)=f'(x)﹣x的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l1:ax-by-1=0(a、b不同时为0),l2:(a+2)x+y+a=0.
(1)若b=0且l1⊥l2,求实数a的值;
(2)当b=2,且l1∥l2时,求直线l1与l2之间的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P(A|B),P(B|A)分别是( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;
(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中, 平面, , , 是的中点, 是等腰三角形, 是的中点, 是上一点.
(Ⅰ)若,证明: 平面;
(Ⅱ)求直线与平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△AOB中, ,斜边AB=4,D是AB中点,现将Rt△AOB以直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,
(1)求圆锥的侧面积;
(2)求直线CD与平面BOC所成的角的大小;(用反三角函数表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com