精英家教网 > 高中数学 > 题目详情

【题目】已知函数 ,把函数 的图象向右平移 个单位,得到函数 的图象,若 内的两根,则 的值为( )
A.
B.
C.
D.

【答案】A
【解析】 ,其中 .将函数 的图像向右平移 个单位,得到3 的图象,由 内的两根,知方程 内有两个根,即直线y=m与 的图象在 内有两个交点,且 关于直线 对称,所以 ,所以 .
【考点精析】通过灵活运用函数y=Asin(ωx+φ)的图象变换,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x3﹣6x2+m(m为常数),在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F(1,0),且点(﹣1, )在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

1)若的概率;

(2)若的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点与抛物线的焦点重合,且该椭圆的离心率与双曲线的离心率互为倒数.

1)求椭圆的方程;

(2)设直线与椭圆相交于不同的两点已知点的坐标为在线段的垂直平分线上,且的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列 中,公差 , ,且 成等比数列.
(1)求数列 的通项公式;
(2)若 为数列 的前 项和,且存在 ,使得 成立,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)若,求方程的解;

(2)若关于x的方程在(0,2)上有两个解,求k的取值范围,并证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知互不重合的直线,互不重合的平面,给出下列四个命题,正确命题的个数是

,则

,则

,则//

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右两个焦点分别为,离心率,短轴长为2.

(Ⅰ)求椭圆的方程;

(Ⅱ)设点为椭圆上的一动点(非长轴端点),的延长线与椭圆交于点,的延长线与椭圆交于点,若面积为,求直线的方程.

【答案】(Ⅰ)(Ⅱ)

【解析】试题分析:(Ⅰ)由题意得,再由 椭圆的方程为;(Ⅱ)①当直线斜率不存在时,不妨取面积为 ,不符合题意. ②当直线斜率存在时,设直线, 由 ,再求点的直线的距离 到直线的距离为面积为 所求方程为.

试题解析:

(Ⅰ)由题意得,∴

,∴

∴椭圆的方程为.

(Ⅱ)①当直线斜率不存在时,不妨取

面积为 ,不符合题意.

②当直线斜率存在时,设直线

化简得

∵点的直线的距离

是线段的中点,∴点到直线的距离为

面积为

,∴,∴,∴

∴直线的方程为.

型】解答
束】
25

【题目】已知函数.

(Ⅰ)求函数的单调区间与极值

(Ⅱ)若证明 .

查看答案和解析>>

同步练习册答案