精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)=2x3﹣6x2+m(m为常数),在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值为

【答案】﹣37
【解析】解:由已知,f′(x)=6x2﹣12x,有6x2﹣12x≥0得x≥2或x≤0,
因此当x∈[2,+∞),(﹣∞,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,
又因为x∈[﹣2,2],
所以得
当x∈[﹣2,0]时f(x)为增函数,在x∈[0,2]时f(x)为减函数,
所以f(x)max=f(0)=m=3,故有f(x)=2x3﹣6x2+3
所以f(﹣2)=﹣37,f(2)=﹣5
因为f(﹣2)=﹣37<f(2)=﹣5,所以函数f(x)的最小值为f(﹣2)=﹣37.
答案为:﹣37
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 平面为等边三角形, 上的点,且.

(1)求和平面所成角的正弦值;

(2)线段上是否存在点,使平面?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光线从点A(-3,4)射出,到x轴上的点B后,被x轴反射到y轴上的点C,又被y轴反射,这时反射光线恰好过点D(-1,6),求光线BC所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=cosωx(ω>0),将y=f(x)的图象向右平移 个单位长度后,所得的图象与原图象重合,则ω的最小值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x2lnx,g(x)=ax3﹣x2
(1)求函数f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求实数a的取值范围;
(3)若使方程f(x)﹣g(x)=0在x∈[ ,en](其中e=2.7…为自然对数的底数)上有解的最小a的值为an , 数列{an}的前n项和为Sn , 求证:Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[1,+∞]上的函数,且f(x)= ,则函数y=2xf(x)﹣3在区间(1,2015)上零点的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从椭圆上一点轴作垂线,垂足恰好为椭圆的左焦点 是椭圆的右顶点, 是椭圆的上顶点,且.

(1)求该椭圆的方程;

(2)不过原点的直线与椭圆交于两点,已知,直线 的斜率, 成等比数列,记以 为直径的圆的面积分别为,求证; 为定值,并求出定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,把函数 的图象向右平移 个单位,得到函数 的图象,若 内的两根,则 的值为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案