精英家教网 > 高中数学 > 题目详情
若A,B,C是△ABC的三个内角,则下列等式成立的是(  )
A、sin(B+C)=sinAB、cos(B+C)=cosAC、tan(B+C)=tanAD、cot(B+C)=cotA
分析:由A,B,C是△ABC的三个内角,得到B+C=π-A,利用诱导公式化简得到结果,即可做出判断.
解答:解:∵A,B,C是△ABC的三个内角,
∴A+B+C=π,即B+C=π-A,
∴sin(B+C)=sin(π-A)=sinA,cos(B+C)=cos(π-A)=-cosA,tan(B+C)=tan(π-A)=-tanA,cot(B+C)=cot(π-A)=-cotA,
则等式成立的为sin(B+C)=sinC.
故选:A.
点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a,b,c是不全相等的实数,求证:a2+b2+c2>ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:

若A,B,C是上不共线的三点,动点P满足
OP
=
1
3
[(1-t)
OA
+(1-t)
OB
+(1+2t)
OC
]
(t∈R且t≠0),则点P的轨迹一定通过△ABC的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
c
是空间任意三个向量,λ∈R,下列关系式中,不成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①若p、q为两个命题,则“p且q为真”是“p或q为真”的必要不充分条件;
②若p为:?x∈R,x2+2x+2≤0,则¬p为:?x∈R,x2+2x+2>0;
③若椭圆
x2
16
+
y2
2
=1的两焦点为F1,F2,且弦AB过F1点,则△ABF2的周长为20;
④若a、b、c是常数,则“a>0且b2-4ac<0”是“对任意x∈R,有ax2+bx+c>0”的充要条件.
在上述命题中,正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,对称轴为坐标轴的椭圆与直线x+y=3相交于A、B两点,C是AB的中点,若|AB|=2,O是坐标原点,OC的斜率为2,求椭圆的方程.

查看答案和解析>>

同步练习册答案