精英家教网 > 高中数学 > 题目详情

如图,四棱锥P-ABCD的底边ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)若BE⊥平面PCD,求平面EBD与平面CBD夹角的余弦值.

解:设AB=a,PA=b,以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则A(0,0,0),B(a,0,0),P(0,0,b),C(2a,2a,0),D(0,2a,0),E(a,a,).
(Ⅰ)证明:

又∵BE?平面PAD
∴BE∥平面PAD.
(Ⅱ)∵BE⊥平面PCD,∴BE⊥PC,即
又∵
.即b=2a
在平面BDE和平面BDC中,
∴平面BDE的一个法向量为
平面BDC的一个法向量为

∴平面EBD与平面CBD夹角的余弦值为
分析:(I)以A为坐标原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,写出要用的点的坐标,根据向量的共线关系得到线与线之间的平行关系,得到线与面平行的结论.
(II)根据面面垂直得到线线垂直,得到两个向量的数量积等于0,求出两个字母之间的关系,设出平面的法向量,根据数量积等于0,做出法向量,进而求出面面角.
点评:本题第一小题考查空间中直线与平面的位置关系的证明,主要应用线面平行判断定理,本题获得定理成立的条件方法是向量法,第二小题考查用空间向量求二面角,本题解题的关键是建立坐标系,把难度比较大的二面角的求法,转化成了数字的运算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案