【题目】已知椭圆,若在,,,四个点中有3个在上.
(1)求椭圆的方程;
(2)若点与点是椭圆上关于原点对称的两个点,且,求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知数列,,其前项和满足,其中.
(1)设,证明:数列是等差数列;
(2)设,为数列的前项和,求证:;
(3)设(为非零整数,),试确定的值,使得对任意,都有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的左、右焦点分别为,,若椭圆经过点,且的面积为.
(1)求椭圆的标准方程;
(2)设斜率为的直线与以原点为圆心,半径为的圆交于,两点,与椭圆交于,两点,且,当取得最小值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,
(Ⅰ)设分别为的中点,求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-4:坐标系与参数方程】
在平面直角坐标系中,曲线的参数方程为: (为参数, ),将曲线经过伸缩变换: 得到曲线.
(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;
(2)若直线(为参数)与相交于两点,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当 时,图象是二次函数图象的一部分,其中顶点,过点;当 时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com