精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,若在四个点中有3个在上.

(1)求椭圆的方程;

(2)若点与点是椭圆上关于原点对称的两个点,且,求的取值范围.

【答案】(1) .(2)

【解析】

(1) 由于椭圆是对称图形,得点必在椭圆上,故,再分别讨论上时和上时椭圆的方程,根据题意进行排除,最后求解出结果。

(2) ,利用向量的坐标运算表达出的值,根据对称性分类讨论设出直线的方程,联立椭圆方程,结合韦达定理,将转化为求函数的值域问题,从而求解出的范围。

解:(1)关于轴对称,

由题意知上,当上时,

上时,

矛盾,∴椭圆的方程为

(2)设关于坐标原点对称,

轴不垂直时,设直线的方程为

代入椭圆方程

由于可以取任何实数,故

轴垂直时,

综上可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是互不相同的空间直线,是不重合的平面,则下列命题中为真命题的是( )

A. ,则 B. ,则

C. ,则 D. ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和满足,其中.

(1)设,证明:数列是等差数列;

(2)设为数列的前项和,求证:

(3)设为非零整数,),试确定的值,使得对任意,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,若椭圆经过点,且的面积为.

(1)求椭圆的标准方程;

(2)设斜率为的直线与以原点为圆心,半径为的圆交于两点,与椭圆交于两点,且,当取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面

(Ⅰ)设分别为的中点,求证:平面

(Ⅱ)求证:平面

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有两个零点.

(1)求实数的取值范围;

(2)求证:当时,

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当 时,图象是二次函数图象的一部分,其中顶点,过点;当 时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)

查看答案和解析>>

同步练习册答案