精英家教网 > 高中数学 > 题目详情

定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)
(Ⅱ)求证f(x)为奇函数;
(Ⅲ)若f()+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.

解:(Ⅰ)令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.…2分
(Ⅱ)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有
0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,
所以f(x)是奇函数.           ………………………………6分
(Ⅲ) 因为f(x)在R上是增函数,又由(Ⅱ)知f(x)是奇函数.
f()<-f(3-9-2)=f(-3+9+2),  <-3+9+2,
3-(1+k)+2>0对任意x∈R成立. …… …………………8分
令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.
,其对称轴为
………………10
        解得:
综上所述,当时,f()+f(3-9-2)<0对任意x∈R恒成立.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知偶函数满足:当时,
时,
(1) 求当时,的表达式;
(2) 试讨论:当实数满足什么条件时,函数有4个零点,
且这4个零点从小到大依次构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)探究函数的最小值,并确定取得最小值时x的值. 列表如下, 请观察表中y值随x值变化的特点,完成以下的问题.

x

0.25
0.5
0.75
1
1.1
1.2
1.5
2
3
5

y

8.063
4.25
3.229
3
3.028
3.081
3.583
5
9.667
25.4

已知:函数在区间(0,1)上递减,问:
(1)函数在区间                  上递增.当               时,                 
(2)函数在定义域内有最大值或最小值吗?如有,是多少?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)已知函数
⑴ 判断函数的单调性,并利用单调性定义证明;
⑵ 求函数的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数,并且函数的图像经过点
(1)求实数的值;   
(2)求函数的值域;
(3)证明函数在(0,+上单调递减,并写出的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=是定义在(-1,1)上的奇函数,且f()=.
(1)求函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)解不等式f(t-1)+f(t)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)设函数
(1)求它的定义域;(2)判断它的奇偶性;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为对定义域内的任意,都有,且当
(1)求证:是偶函数;
(2)求证:上是增函数;
(3)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,则      

查看答案和解析>>

同步练习册答案