【题目】已知f(x)=e2x+ln(x+a).
(1)当a=1时,①求f(x)在(0,1)处的切线方程;②当x≥0时,求证:f(x)≥(x+1)2+x.
(2)若存在x0∈[0,+∞),使得 成立,求实数a的取值范围.
【答案】
(1)解:a=1时,f(x)=e2x+ln(x+1),f′(x)=2e2x+ ,
①可得f(0)=1,f′(0)=2+1=3,
所以f(x)在(0,1)处的切线方程为y=3x+1;
②证明:设F(x)=e2x+ln(x+1)﹣(x+1)2﹣x(x≥0),
F′(x)=2e2x+ ﹣2(x+1)﹣1
F″(x)=4e2x﹣ ﹣2=[e2x﹣﹣ ]+2(e2x﹣1)+e2x>0,(x≥0),
所以,F′(x)在[0,+∞)上递增,所以F′(x)≥F′(0)=0,
所以,F(x)在[0,+∞)上递增,所以F(x)≥F(0)=0,
即有当x≥0时,f(x)≥(x+1)2+x
(2)解:存在x0∈[0,+∞),使得 成立
存在x0∈[0,+∞),使得e ﹣ln(x0+a)﹣x02<0,
设u(x)=e2x﹣ln(x+a)﹣x2,
u′(x)=2e2x﹣ ﹣2x,u″(x)=4e2x+ ﹣2>0,
可得u′(x)在[0,+∞)单调增,即有u′(x)≥u′(0)=2﹣
①当a≥ 时,u′(0)=2﹣ ≥0,
可得u(x)在[0,+∞)单调增,
则u(x)min=u(0)=1﹣lna<0,
解得a>e;
②当a< 时,ln(x+a)<ln(x+ ),
设h(x)=x﹣ ﹣ln(x+ ),(x>0),
h′(x)=1﹣ = ,
另h′(x)>0可得x> ,h′(x)<0可得0<x< ,
则h(x)在(0, )单调递减,在( ,+∞)单调递增.
则h(x)≥h( )=0./p>
设g(x)=e2x﹣x2﹣(x﹣ ),(x>0),
g′(x)=2e2x﹣2x﹣1,
g″(x)=4e2x﹣2>4﹣2>0,
可得g′(x)在(0,+∞)单调递增,
即有g′(x)>g′(0)=1>0,
则g(x)在(0,+∞)单调递增,
则g(x)>g(0)>0,
则e2x﹣x2>x﹣ >ln(x+ )>ln(x+a),
则当a< 时,f(x)>2ln(x+a)+x2恒成立,不合题意.
综上可得,a的取值范围为(e,+∞)
【解析】(1)①求出f(x)的导数,可得切线的斜率,由斜截式方程即可得到所求切线的方程;②设F(x)=e2x+ln(x+1)﹣(x+1)2﹣x(x≥0),通过两次求导,判断F(x)的单调性,即可得证;(2)由题意可得存在x0∈[0,+∞),使得e ﹣ln(x0+a)﹣x02<0,设u(x)=e2x﹣ln(x+a)﹣x2 , 两次求导,判断单调性,对a讨论,分①当a≥ 时,②当a< 时,通过构造函数和求导,得到单调区间,可得最值,即可得到所求a的范围.
科目:高中数学 来源: 题型:
【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600件.
(1)设一次订购件,服装的实际出厂单价为元,写出函数的表达式;
(2)当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆(x-3) 2+(y+4) 2=1关于直线x+y=0对称的圆的方程是( )
A. (x+3)2+(y-4)2=1
B. (x-4)2+(y+3)2=1
C. (x+4)2+(y-3)2=1
D. (x-3)2+(y-4)2=1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边长分别为a,b,c,且cos2B﹣cos2A=2sinC(sinA﹣sinC).
(1)求角B的大小;
(2)若 ,求2a+c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
如图在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的
中点.
(1) 求证: AC⊥BC1
(2) 求证:AC1∥平面CDB1
(3) 求异面直线AC1与B1C所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com