精英家教网 > 高中数学 > 题目详情
18.以下不等式结果计算正确的是(  )
A.3-0.4<3-0.5B.1.022>1.025C.0.3m<0.3n(m<n)D.am>an(0<a<1,m<n)

分析 利用指数函数的单调性依次判断即可得出答案.

解答 解:根据指数函数的单调性,当底数a>1时,是增函数,指数越大,函数值越大;当底数0<a<1时,是减函数,指数越大,函数值越小.
对于A:底数3>1,增函数,-0.5<-0.4,∴3-0.4>3-0.5,故A不对.
对于B:底数1.02>1,增函数,2<5,∴1.022<1.025,故B不对.
对于C:底数0.3<1,减函数,m<n,∴0.3m>0.3n,故C不对.
对于D:底数a在0<a<1,减函数,m<n,∴am>an,故D对.
故选D.

点评 本题考查了指数函数的单调性的运用,当底数a>1时,是增函数,指数越大,函数值越大;当底数0<a<1时,是减函数,指数越大,函数值越小.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,椭圆C过点P(1,$\frac{{\sqrt{2}}}{2}}$),直线PF1交y轴于Q,且$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{QO}$,O为坐标原点.
(1)求椭圆C的方程;
(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=x3+bx2+cx+d(b,c,d为常数),当x∈(0,1)时取得极大值,当x∈(1,2)时取极小值,则(b+$\frac{1}{2}$)2+(c-3)2的取值范围是(5,25).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知A=[$\begin{array}{l}2&0\\{-1}&1\end{array}}$],B=[$\begin{array}{l}2&4\\ 3&5\end{array}}$],且二阶矩阵M满足AM=B.
(1)求A-1
(2)求矩阵M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\sqrt{{x}^{2}+4}$,g(x)=$\sqrt{{x}^{2}-4}$,求f(a-$\frac{1}{a}$)+g(a+$\frac{1}{a}$)的值(a≥1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在四面体A-BCD,AB=BC=CD=AD,∠BAD=∠BCD=90°,A-BD-C为直二面角,E是CD的中点,则∠AED的度数为(  )
A.45°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{a{e}^{x}}{x}$+x.
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线经过点(0,1),求实数a的值.
(Ⅱ)求证:当a<0时,函数f(x)至多有一个极值点.
(Ⅲ)是否存在实数a,使得函数f(x)在定义域上的极小值大于极大值?若存在,求出a的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{4}{3}$x3-2x2+ax+b的图象在点P(0,f(0))处的切线方程为y=2x+1.
(I)求实数a、b的值;
(Ⅱ)设g(x)=f(x)+$\frac{m}{2x-1}$是[1,+∞)上的增函数,
(i)求实数m的最大值;
(ii)当m取最大值时,是否存在点Q,使得过点Q的直线能与曲线y=g(x)围成两个封闭图形,则这两个封闭图形的面积总相等?若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=ax2+bx+c(a,b,c∈R且a>0),则“f(f(-$\frac{b}{2a}$))<0”是“f(x)与f(f(x))都恰有两个零点”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案