【题目】若直线y=x+b与曲线 有公共点,则b的取值范围是( )
A.[ , ]
B.[ ,3]
C.[﹣1, ]
D.[ ,3]
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=alnx﹣x2+1.
(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三棱锥P﹣ABC中,已知PA=PB=PC=AC=4,BC= AB=2 ,O为AC中点.
(1)求证:PO⊥平面ABC;
(2)求异面直线AB与PC所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆C的中心在坐标原点,焦点在x轴上,该椭圆经过点 且离心率为 .
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)=x2+mx+n(m、n∈R)的两个零点分别在(0,1)与(1,2)内,则(m+1)2+(n﹣2)2的取值范围是( )
A.
B.
C.[2,5]
D.(2,5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是定义在[﹣1,1]上的奇函数,且对任意a、b∈[﹣1,1],当a+b≠0时,都有 >0.
(1)若a>b,比较f(a)与f(b)的大小;
(2)解不等式f(x﹣ )<f(x﹣ );
(3)记P={x|y=f(x﹣c)},Q={x|y=f(x﹣c2)},且P∩Q=,求c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= (m,n为常数)是定义在[﹣1,1]上的奇函数,且f(﹣1)=﹣ .
(1)求函数f(x)的解析式;
(2)解关于x的不等式f(2x﹣1)<﹣f(x).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com