精英家教网 > 高中数学 > 题目详情
5.求证:sin3θ(1+cotθ)+cos3θ(1+tanθ)=sinθ+cosθ.并证明.

分析 根据三角函数的恒等式证明即可.

解答 证明:sin3θ(1+cotθ)+cos3θ(1+tanθ)
=sin3θ(1+$\frac{cosθ}{sinθ}$)+cos3θ(1+$\frac{sinθ}{cosθ}$)
=sin3θ+sin2θcosθ+cos3θ+cos2θsinθ
=(sinθ+cosθ)(sin2θ-sinθcosθ+cos2θ)+sin2θcosθ+cos2θsinθ
=(sinθ+cosθ)(1-sinθcosθ)+sin2θcosθ+cos2θsinθ
=sinθ+cosθ-sin2θcosθ-cos2θsinθ+sin2θcosθ+cos2θsinθ
=sinθ+cosθ.

点评 本题考查了三角函数的恒等变换,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在△ABC中,a,b,c分别为角A,B,C所对的边,设向量$\vec m$=(b,c-a),$\vec n$=(b-c,c+a),若$\vec m⊥\vec n$,则角A的大小为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\sqrt{x+1}$+log2017(2-x)的定义域为(  )
A.(-2,1]B.[1,2]C.[-1,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2x3+3x2+6x-5,则f′(0)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知圆C的方程为(x-3)2+y2=1,圆M的方程为(x-3-3cosθ)2+(y-3sinθ)2=1(θ∈R),过M上任意一点P作圆C的两条切线PA,PB,切点分别为A、B,则∠APB的最大值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知任意两个向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,若$\overrightarrow{OA}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{OC}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OD}$=$\overrightarrow{a}$-$\overrightarrow{b}$,则下列结论正确的是(  )
A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,点G是△OAB的重心,过点G的直线PQ与OA、OB分别交于P、Q两点.
(1)用$\overrightarrow{a}$、$\overrightarrow{b}$表示$\overrightarrow{OG}$;
(2)若$\overrightarrow{OP}$=m$\overrightarrow{a}$,$\overrightarrow{OQ}$=n$\overrightarrow{b}$,试问$\frac{1}{m}$+$\frac{1}{n}$是否为定值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=lnx-kx+1.
(1)当k=2时,求函数的单调增区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a0+a1(2x-1)+a2(2x-1)2+a3(2x-1)3+a4(2x-1)4+a5(2x-1)5=x5,则a2=(  )
A.$\frac{5}{4}$B.$\frac{5}{8}$C.$\frac{5}{16}$D.$\frac{5}{32}$

查看答案和解析>>

同步练习册答案