精英家教网 > 高中数学 > 题目详情
12.在△ABC中,a,b,c分别为角A,B,C所对的边,设向量$\vec m$=(b,c-a),$\vec n$=(b-c,c+a),若$\vec m⊥\vec n$,则角A的大小为$\frac{2π}{3}$.

分析 利用向量垂直的性质推导出b2+c2-a2=-bc,由此利用余弦定理能求出角A的大小.

解答 解:∵在△ABC中,a,b,c分别为角A,B,C所对的边,
向量$\vec m$=(b,c-a),$\vec n$=(b-c,c+a),$\vec m⊥\vec n$,
∴$\overrightarrow{m}•\overrightarrow{n}$=b(b-c)+(c-a)(c+a)=b2+bc+c2-a2=0,
∴b2+c2-a2=-bc,
cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{-bc}{2bc}$=-$\frac{1}{2}$,
∴A=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题考查角的求法,是基础题,解题时要认真审题,注意向量垂直、余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.过双曲线x2-y2=1的右焦点F作倾角为600的直线l,交双曲线于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校高二年级在一次数学测验后,随机抽取了部分学生的数学成绩组成一个样本,得到如下频率分布直方图:
(1)求这部分学生成绩的样本平均数$\overline x$和样本方差s2(同一组数据用该组的中点值作为代表)
(2)由频率分布直方图可以认为,该校高二学生在这次测验中的数学成绩X服从正态分布$N(\overline x,{s^2})$.
①利用正态分布,求P(X≥129);
②若该校高二共有1000名学生,试利用①的结果估计这次测验中,数学成绩在129分以上(含129分)的学生人数.(结果用整数表示)
附:①$\sqrt{210}$≈14.5②若X~N(μ,σ2),则P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.m,n是两条不同的直线,α,β是两个不同的平面,下列命题是真命题的是(  )
A.若m∥α,m∥β,则α∥βB.若m⊥α,α⊥β,则 m∥β
C.若m?α,m⊥β,则 α⊥βD.若m?α,α⊥β,则 m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设a=0.991.01,b=1.010.99,c=log1.010.99,则(  )
A.c<b<aB.c<a<bC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设全集U={0,1,2,3},集合A={0,2},集合B={2,3},则(∁UA)∪B=(  )
A.{3}B.{2,3}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某园林公司准备绿化一块半径为200米,圆心角为$\frac{π}{4}$的扇形空地(如图的扇形OPQ区域),扇形的内接矩形ABCD为一水池,其余的地方种花,若∠COP=α,矩形ABCD的面积为S(单位:平方米).
(1)试将S表示为关于α的函数,求出该函数的表达式;
(2)角α取何值时,水池的面积 S最大,并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将四位同学等可能的分到甲、乙、丙三个班级,则甲班级至少有一位同学的概率是$\frac{65}{81}$,用随机变量ξ表示分到丙班级的人数,则Eξ=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求证:sin3θ(1+cotθ)+cos3θ(1+tanθ)=sinθ+cosθ.并证明.

查看答案和解析>>

同步练习册答案