精英家教网 > 高中数学 > 题目详情
6.设等差数列{an}的前n项和为Sn,若S9=54,则a2+a4+a9=(  )
A.9B.15C.18D.36

分析 由等差数列的求和公式和性质可得a5=4,而要求的式子可化为3a5,代入可得答案.

解答 解:由等差数列的求和公式可得:S9=$\frac{9}{2}$(a1+a9)=54,
又由等差数列的性质可得a1+a9=2a5,即9a5=54,
解得a5=6,而a2+a4+a9=a5+a4+a6=3a5=18.
故选:C.

点评 本题考查等差数列的性质和求和公式,划归为a5来解决问题是本题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x∈R,x2-2xsinθ+1≥0;命题q:?α,β∈R,sin(α+β)≤sinα+sinβ,则下列命题中的真命题为(  )
A.(¬p)∧qB.p∧(¬q)C.(¬p)∨qD.¬(p∨q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.二项式${(\frac{2}{x}+x)^4}$的展开式中常数项为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足$\overrightarrow{B{F}_{1}}$=$\overrightarrow{{F}_{1}{F}_{2}}$,且$\overrightarrow{AB}$•$\overrightarrow{A{F}_{2}}$=0.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若D是经过A、B、F2三点的圆上的点,且D到直线l:x-$\sqrt{3}$y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q是椭圆C上异于A的两点,且以PQ为直径的圆过点A,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为响应阳光体育运动的号召,某县中学生足球活动正如火如荼的开展,该县为了解本县中学生的足球运动状况,根据性别采取分层抽样的方法从全县24000名中学生(其中男生14000人,女生10000人)中抽取120名,统计他们平均每天足球运动的时间,如表:(平均每天足球运动的时间单位为小时,该县中学生平均每天足球运动的时间范围是[0,3])
男生平均每天足球运动的时间分布情况:
平均每天足球运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数23282210x
女生平均每天足球运动的时间分布情况:
平均每天足球运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数51218103y
(Ⅰ)请根据样本估算该校男生平均每天足球运动的时间(结果精确到0.1);
(Ⅱ)若称平均每天足球运动的时间不少于2小时的学生为“足球健将”.低于2小时的学生为“非足球健将”.
①请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断,能否有90%的把握认为是否为“足球健将”与性别有关?
足球健将非足球健将总  计
男  生
女  生
总  计
②若在足球活动时间不足1小时的男生中抽取2名代表了解情况,求这2名代表都是足球运动时间不足半小时的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2>k00.500.400.250.150.100.050.0250.010
  k00.4550.7081.3232.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知点P(x,y)的坐标满足条件$\left\{\begin{array}{l}x-y≤4\\ x+y≤0\\ x≥0\end{array}\right.$,若点O为坐标原点,点M(-1,-1),那么$\overrightarrow{OM}•\overrightarrow{OP}$的最大值等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2+m与函数$g(x)=-ln\frac{1}{x}-3x$$(x∈[\frac{1}{2},2])$的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是(  )
A.$[\frac{5}{4}+ln2,2]$B.$[2-ln2,\frac{5}{4}+ln2]$C.$[\frac{5}{4}+ln2,2+ln2]$D.[2-ln2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若正整数n除以正整数m后的余数为N,则记为n≡N(bmodm),例如10≡4(bmod6),下面程序框图的算法源于我国古代闻名中外的“中国剩余定理”,执行该程序框图,则输出的n等于(  )
A.11B.13C.14D.17

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用0,1,2,3,4,组成没有重复数字的四位数,个位数与十位数的差的绝对值不超过2,这样的四位数的个数是64.

查看答案和解析>>

同步练习册答案