精英家教网 > 高中数学 > 题目详情
14.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足$\overrightarrow{B{F}_{1}}$=$\overrightarrow{{F}_{1}{F}_{2}}$,且$\overrightarrow{AB}$•$\overrightarrow{A{F}_{2}}$=0.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若D是经过A、B、F2三点的圆上的点,且D到直线l:x-$\sqrt{3}$y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q是椭圆C上异于A的两点,且以PQ为直径的圆过点A,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

分析 (Ⅰ)由即F1为BF2的中点,利用直角三角形的性质,求得AF1=F1F2,即a=2c,利用离心率公式即可求得椭圆C的离心率;
(Ⅱ)分别求得A、B、F2三点坐标,求得外接圆半径,利用点到直线的距离公式,$\frac{丨-\frac{1}{2}a-3丨}{2}$=a,即可求得a和b的值,求得椭圆方程;
(Ⅲ)将直线方程代入椭圆方程,利用韦达定理及向量数量积的坐标运算,求得m=-$\frac{\sqrt{3}}{7}$即可求得定点坐标.

解答 解:(Ⅰ)连接AF1,由$\overrightarrow{AB}$•$\overrightarrow{A{F}_{2}}$=0,AB⊥AF2,$\overrightarrow{B{F}_{1}}$=$\overrightarrow{{F}_{1}{F}_{2}}$,即F1为BF2的中点,
则AF1=F1F2
即a=2c,故椭圆的离心率e=$\frac{1}{2}$;…(3分)
(Ⅱ)由(Ⅰ)知e=$\frac{c}{a}$=$\frac{1}{2}$,得c=$\frac{1}{2}$a,于是F2($\frac{1}{2}$a,0),B(-$\frac{3}{2}$a,0),
Rt△ABC的外接圆圆心为F1(-$\frac{1}{2}$a,0),半径r=$\frac{1}{2}$丨F2B丨=a,…(5分)
D到直线l:x-$\sqrt{3}$y-3=0的最大距离等于2a,
∴圆心到直线的距离为a,
∴$\frac{丨-\frac{1}{2}a-3丨}{2}$=a,
解得:a=2,c=1,
b2=a2-b2=3,…(7分)
求椭圆方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;…(8分)
( III)由题意知,直线PQ的斜率存在,设直线PQ的方程为:y=kx+m,
由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,代入消y得:(3+4k2)x+8kmx+4m2-12=0,
由△>0,得64k2m2-16(3+4k2)(4m2-12)>0,化简得4k2-m2+3>0,设P(x1,y1),Q(x2,y2),
则x1+x2=-$\frac{8km}{3+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-12}{3+4{k}^{2}}$,(10分)
y1+y2=k(x1+x2)+2m=$\frac{6m}{3+4{k}^{2}}$,y1y2=(k1x+m)(k2x+m)=$\frac{3{m}^{2}-12{k}^{2}}{3+4{k}^{2}}$,容易知$\overrightarrow{AP}$•$\overrightarrow{AQ}$=0,
$\overrightarrow{AP}$•$\overrightarrow{AQ}$=(x1,y1-$\sqrt{3}$)(x2,y2-$\sqrt{3}$)=x1x2+y1y2-$\sqrt{3}$(y1+y2)+3=0,
代入化简得:7m2-6$\sqrt{3}$m-3=0,解得:m=-$\frac{\sqrt{3}}{7}$或m=$\sqrt{3}$(舍),…(13分)
故直线PQ是过定点(0,-$\frac{\sqrt{3}}{7}$).…(14分)

点评 本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,韦达定理,向量数量积的坐标运算,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图所示,在△ABC中,D为BC的中点,BP丄DA,垂足为P,且BP=2,则$\overrightarrow{BC}$•$\overrightarrow{BP}$=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(a,b)与点B(0,3)在直线3x-4y+5=0的同侧,给出下列四个命题:
①若a>1,则b>2;
②$\sqrt{{a}^{2}+{b}^{2}}$>1;
③函数f(x)=sinx-3a+4b-4有无数个零点;
④当b<0时,$\frac{b-1}{a}$的取值范围是(0,$\frac{3}{4}$).
其中所有正确命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设圆:x2+y2+2y-3=0与y轴交于A(0,y1),B(0,y2)两点,则y1y2 的值为(  )
A.3B.-3C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.阅读如图所示的程序框图,若输入p=2,q=9,则输出的a、i的值分别为(  )
A.a=3,i=1B.a=18,i=16C.a=18,i=15D.a=9,i=7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对实数a与b,定义新运算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$.设函数f(x)=(x2-2)?(x-x2),x∈R.若函数y=f(x)-c的零点恰有两个,则实数c的取值范围是(  )
A.(-∞,-2]∪(-1,$\frac{3}{2}$)B.(-∞,-2]∪(-1,-$\frac{3}{4}$)C.(-∞,$\frac{1}{4}$)∪($\frac{1}{4}$,+∞)D.(-1,-$\frac{3}{4}$)∪[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设等差数列{an}的前n项和为Sn,若S9=54,则a2+a4+a9=(  )
A.9B.15C.18D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=1,a3=9,且an=an-1+λn-1(n≥2).
( I)求λ的值及数列{an}的通项公式;
( II)设${b_n}={(-1)^n}•({a_n}+n)$,且数列{bn}的前n项和为Sn,求S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数z=$\frac{(-1+i)(2+i)}{-i}$,则z在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案