精英家教网 > 高中数学 > 题目详情
5.已知点A(a,b)与点B(0,3)在直线3x-4y+5=0的同侧,给出下列四个命题:
①若a>1,则b>2;
②$\sqrt{{a}^{2}+{b}^{2}}$>1;
③函数f(x)=sinx-3a+4b-4有无数个零点;
④当b<0时,$\frac{b-1}{a}$的取值范围是(0,$\frac{3}{4}$).
其中所有正确命题的序号是①②④.

分析 点A(a,b)和点B(0,3)在直线1:3x-4y+5=0的同侧,则(3a-4b+5)×(3×0-4×3+5)>0,即3a-4b+5<0,作出点A(a,b) 对应的平面区域,利用目标函数的几何意义结合数形结合进行判断即可

解答 解:点A(a,b)和点B(0,3)在直线1:3x-4y+5=0的同侧,
则(3a-4b+5)×(3×0-4×3+5)>0,即3a-4b+5<0,点A(a,b)的区域如图所示.
对于①,若a>1,由3a-4b+5<0;可得b>2,故正确;
对于②,∵原点到直线3a-4b+5=0的距离等于1,∴$\sqrt{{a}^{2}+{b}^{2}}$>1,故正确;
对于③,函数f(x)=sinx-3a+4b-4零点,就是y=sinx与y=3a-4b+4的交点,∵y=3a-4b+4>-1,故错;
对于④,当b<0时,$\frac{b-1}{a}$表示过点A(a,b)与点(0,1)的斜率,根据图象可得其取值范围是(0,$\frac{3}{4}$),故正确.
故答案为:①②④.

点评 本题考查的知识点是二元一次不等式与平面区域,考查转化思想与运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某地十余万考生的成绩中,随机地抽取了一批考生的成绩,将其分为6组:第一组[40,50),第二组[50,60),…,第六组[90,100],作出频率分布直方图,如图所示
(I)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩;
(II)现从及格的学生中,用分层抽样的方法抽取了70名学生(其中女生有34名),已知成绩“优异”(超过90分)的女生有1名,能否有95%的把握认为数学成绩优异与性别有关?
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.010.050.0250.010
k02.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x∈R,x2-2xsinθ+1≥0;命题q:?α,β∈R,sin(α+β)≤sinα+sinβ,则下列命题中的真命题为(  )
A.(¬p)∧qB.p∧(¬q)C.(¬p)∨qD.¬(p∨q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}{a^x},\;0<x≤1\;\\{log_a}x\;,x>1\end{array}\right.$(a>0且a≠1),若f(3a2)>f(1-2a),则a的取值范围是(  )
A.$0<a<\frac{1}{2}$B.$\frac{1}{3}<a<\frac{1}{2}$C.$0<a<\frac{1}{3}$D.a>1或$0<a<\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设数列{an}的前n项和为Sn,若$\frac{1}{2}≤\frac{{{a_{n+1}}}}{a_n}≤2$(n∈N*),则称{an}是“紧密数列”;
(1)若a1=1,${a_2}=\frac{3}{2}$,a3=x,a4=4,求x的取值范围;
(2)若{an}为等差数列,首项a1,公差d,且0<d≤a1,判断{an}是否为“紧密数列”;
(3)设数列{an}是公比为q的等比数列,若数列{an}与{Sn}都是“紧密数列”,求q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2ln(ax)(a>0).
(1)当a=1时,设函数g(x)=$\frac{f(x)}{x}$,求g(x)的单调区间;
(2)若f′(x)≤x2对任意的x>0恒成立,求a的取值范围;
(3)若x1、x2∈($\frac{1}{e}$,+∞),求证:x1x2<(x1+x24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.二项式${(\frac{2}{x}+x)^4}$的展开式中常数项为24.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足$\overrightarrow{B{F}_{1}}$=$\overrightarrow{{F}_{1}{F}_{2}}$,且$\overrightarrow{AB}$•$\overrightarrow{A{F}_{2}}$=0.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若D是经过A、B、F2三点的圆上的点,且D到直线l:x-$\sqrt{3}$y-3=0的最大距离等于椭圆长轴的长,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,设P、Q是椭圆C上异于A的两点,且以PQ为直径的圆过点A,问直线PQ是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若正整数n除以正整数m后的余数为N,则记为n≡N(bmodm),例如10≡4(bmod6),下面程序框图的算法源于我国古代闻名中外的“中国剩余定理”,执行该程序框图,则输出的n等于(  )
A.11B.13C.14D.17

查看答案和解析>>

同步练习册答案