已知全集为R,集合A={x|
x≤1},B={x|x2-6x+8≤0},则A∩
B=( )
A.{x|x≤0} B.{x|2≤x≤4}
C.{x|0≤x<2或x>4} D.{x|0<x≤2或x≥4}
科目:高中数学 来源: 题型:
某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图. 为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.
![]()
(Ⅰ)当a=b=3时,记甲型号电视机的“星级卖场”数量为m,乙型号电视机的“星级卖场”数量为n,比较m,n的大小关系;
(Ⅱ)在这10个卖场中,随机选取2个卖场,记X为其中甲型号电视机的“星级卖场”的个数,求X的分布列和数学期望.
(Ⅲ)若a=1,记乙型号电视机销售量的方差为
,根据茎叶图推断b为何值时,
达到最小值.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1、F2,这两条曲线在第一象限的 交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,设椭圆与双曲线的离心率分别为e1、e2,则e1+e2的取值范围是
A.(
,+∞) B.(
,+∞) C.(
,+∞) D.(
,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知椭圆C:
(a>b>0)的离心率e=
,
短轴的右端点为A,M(1,0)为线段OA的中点.
(1)求椭圆C的方程;
(2)过点M任作一条直线与椭圆C相交于两点P,Q,试问在x轴上是否存在定点N,使得∠PNM=∠QNM?若存在,求出点N的坐标;若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如右数据:
| 单价 | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量 | 90 | 84 | 83 | 80 | 75 | 68 |
由表中数据,求得线性回归方程为
.若在这些样本点中任取一点,则它在回归直线左下方的概率为_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com