精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=ex+ax2+2ax-3在x∈(0,+∞)上有最小值,则实数a的取值范围为(  )
A.(-∞,-$\frac{1}{2}$)B.(-$\frac{e}{2}$,-$\frac{1}{2}$)C.(-1,0)D.($\frac{1}{2}$,+∞)

分析 求出函数的导数,令f′(x)<0,得:ex<-2a(x+1),令g(x)=ex,h(x)=-2a(x+1),问题h(x)的斜率-2a大于过(-1,0)的g(x)的切线的斜率即可,求出切线的斜率,解关于a的不等式即可.

解答 解:∵f(x)=ex+ax2+2ax-3,
∴f′(x)=ex+2ax+2a,
若函数f(x)在x∈(0,+∞)上有最小值,
即f(x)在(0,+∞)先递减再递增,
即f′(x)在(0,+∞)先小于0,再大于0,
令f′(x)<0,得:ex<-2a(x+1),
令g(x)=ex,h(x)=-2a(x+1),
只需h(x)的斜率-2a大于过(-1,0)的g(x)的切线的斜率即可,
设切点是(x0,${e}^{{x}_{0}}$),
则切线方程是:y-${e}^{{x}_{0}}$=${e}^{{x}_{0}}$(x-a),
将(-1,0)代入切线方程得:x0=0,
故切点是(0,1),切线的斜率是1,
只需-2a>1即可,解得:a<-$\frac{1}{2}$,
故选:A.

点评 本题考查了函数的单调性问题,考查导数的应用以及曲线的切线方程,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知an=$\frac{n-\sqrt{2015}}{n-\sqrt{2016}}$(n∈N*),则数列{an}的前50项中最小项和最大项分别是(  )
A.a1,a50B.a1,a44C.a45,a50D.a44,a45

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=4-\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,在该极坐标系中圆C的方程为ρ=-4cosθ.
(1)求圆C的直角坐标方程;
(2)设圆C与直线l交于点A、B,若点M的坐标为(-2,1),求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ex-ax2-bx-1(a,b∈R,e为自然对数的底数).
(1)若对任意a∈[0,1],总存在x∈[1,2],使得f(x)≤0成立,求b的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=cosx+axsinx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)存在零点,则实数a的取值范围是(  )
A.(0,+∞)B.(1,+∞)C.(-∞,-1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.圆C与直线2x+y-5=0切于点(2,1),且与直线2x+y+15=0也相切,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于直线x=1对称.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A、B、C的对边分别为a、b、c,则以下结论错误的为(  )
A.若$\frac{sinA}{a}=\frac{cosB}{b}=\frac{cosC}{c}$,则A=90°
B.$\frac{a}{sinA}=\frac{b+c}{sinB+sinC}$
C.若sinA>sinB,则A>B;反之,若A>B,则sinA>sinB
D.若sin2A=sin2B,则a=b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若向量$\overrightarrow{a}$=(1,x,2),$\overrightarrow{b}$=(2,-1,y),$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数2x+y的值为(  )
A.5B.4C.3D.1

查看答案和解析>>

同步练习册答案