【题目】如图l,在边长为2的菱形中,,于点,将沿折起到的位置,使,如图2.
(1)求证:平面;
(2)求二面角的余弦值;
(3)在线段上是否存在点,使平面平面?若存在,求的值;若不存在,说明理由.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)由,可得,结合可得到平面,由此得,结合利用线面垂直的判定定理可得结果;(2)以为原点,分别以,,为,,轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求出平面的法向量,结合平面的法向量为,利用空间向量夹角余弦公式可得结果;(3)假设在线段上存在一点满足条件,设出点的坐标,结合对应的比例关系,通过两平面法向量的数量积为零来确定相应的参数值,进而得以确定存在性问题.
(1)因为,,,
所以平面,
因为平面,
所以,
又因为,,
所以平面BCDE.
(2)以E为原点,分别以EB,ED,为x,y,z轴,建立空间直角坐标系,
则,,,
所以,,
设平面的法向量,
由得,
令,得,
因为平面,
所以平面的法向量,
,
因为所求二面角为锐角,
所以二面角的余弦值为.
(3)假设在线段BD上存在一点P,使得平面平面,
设,,则,
所以,
所以,,
设平面的法向量,
由,得,
令,得,
因为平面平面,
所以,解得,
所以在线段BD上存在点P,使得平面平面,且.
科目:高中数学 来源: 题型:
【题目】设椭圆()的左、右焦点为,右顶点为,上顶点为.已知.
(1)求椭圆的离心率;
(2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,点满足,记点的轨迹为.斜率为的直线过点,且与轨迹相交于两点.
(1)求轨迹的方程;
(2)求斜率的取值范围;
(3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存在,求出定点;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在如图所示的几何体中,四边形是正方形,四边形是梯形,∥,,平面平面,且.
(Ⅰ)求证:∥平面;
(Ⅱ)求二面角的大小;
(Ⅲ)已知点在棱上,且异面直线与所成角的余弦值为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中点,E是BD的中点.
(1)证明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,直线与轴的交点为,与的交点为,且.
(Ⅰ)求的方程;
(Ⅱ)设过定点的直线与抛物线交于,两点,连接并延长交抛物线的准线于点,当直线恰与抛物线相切时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cos ωx·sin+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(1)求a和ω的值;
(2)求函数f(x)在[0,π]上的单调递减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com