【题目】在如图所示的几何体中,四边形
是正方形,四边形
是梯形,
∥
,
,平面
平面
,且
.
![]()
(Ⅰ)求证:
∥平面
;
(Ⅱ)求二面角
的大小;
(Ⅲ)已知点
在棱
上,且异面直线
与
所成角的余弦值为
,求线段
的长.
【答案】(1)证明见解析;(2)
;(3)
.
【解析】
先利用线面垂直的性质证明直线
平面
,以点
为原点,分别以
的方向为
轴,
轴,
轴的正向建立空间直角坐标系,(1)可得
是平面
的一个法向量,求得
,利用
,且直线
平面
可得结果;(2)利用向量垂直数量积为0,列方程组分别求出平面
与平面
的法向量,由空间向量夹角余弦公式可得结果;(3)设
,则
,
,
由
,可得
, 解方程可得结果.
(1)
平面
平面
,
平面
平面
,
,
,
直线
平面
.
由题意,以点
为原点,分别以
的方向为
轴,
轴,
轴的正向建立如图空间直角坐标系,
则可得:
,
.
依题意,易证:
是平面
的一个法向量,
又
,
,
又
直线
平面
,
.
(2)
.
设
为平面
的法向量,
则
,即
.
不妨设
,可得
.
设
为平面
的法向量,
又
,
则
,即
.
不妨设
,可得
,
,
又二面角
为钝二面角,
二面角
的大小为
.
(3)设
,则
,又
,
又
,即
,
,解得
或
(舍去).
故所求线段
的长为
.
![]()
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=5,a4﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an+bn,求数列{cn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,当
时,
取得极小值
.
(1)求
的值;
(2)记
,设
是方程
的实数根,若对于
定义域中任意的
,
.当
且
时,问是否存在一个最小的正整数
,使得
恒成立,若存在请求出
的值;若不存在请说明理由.
(3)设直线
,曲线
.若直线
与曲线
同时满足下列条件:
①直线
与曲线
相切且至少有两个切点;
②对任意
都有
.则称直线
与曲线
的“上夹线”.
试证明:直线
是曲线
的“上夹线”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
对任意
满足
,下面给出关于数列
的四个命题:①
可以是等差数列,②
可以是等比数列;③
可以既是等差又是等比数列;④
可以既不是等差又不是等比数列;则上述命题中,正确的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图l,在边长为2的菱形
中,
,
于点
,将
沿
折起到
的位置,使
,如图2.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)在线段
上是否存在点
,使平面
平面
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
过点
,且短轴长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作
轴的垂线
,设点
为第四象限内一点且在椭圆
上(点
不在直线
上),点
关于
的对称点为
,直线
与椭圆
交于另一点
.设
为坐标原点,判断直线
与直线
的位置关系,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为3的正方形,
平面
,
,
,BE与平面
所成角为
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)设点M在线段BD上,且
平面BEF,求
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,直线
,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.
(1)求E的方程;
(2)若点A,B是E上的两个动点,O为坐标原点,且
,求证:直线AB恒过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com