精英家教网 > 高中数学 > 题目详情
已知函数在(1,4)上是减函数,则实数的取值范围是(  )
A.B.C.D.
D  

试题分析:因为,所以,又因为,函数在(1,4)上是减函数,所以在(1,4)恒成立,所以恒成立,而在(1,4)是减函数,所以,,故选D。
点评:中档题,解题思路明确,因为函数为增函数时,0,函数为减函数时,0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若函数上是减函数,求实数的最小值;
(2)若,使)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f (x)=x3-4xa,0<a<2.若f (x)的三个零点为x1x2x3,且x1x2x3,则
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,设函数
(1)若,求函数上的最小值
(2)判断函数的单调性

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数, 其中,的导函数.
(Ⅰ)若,求函数的解析式;
(Ⅱ)若,函数的两个极值点为满足. 设, 试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在R上可导,且,则的大小为(  )
A.B.
C.D.不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.

查看答案和解析>>

同步练习册答案