精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.
(I);(II)单调增区间是;单调减区间是处取得极大值,在处取得极小值.(III)

试题分析:(I),其中.
因为,所以,又,所以
当且仅当时取等号,其最小值为. 2……………………4分
(II)当时,.…5分
的变化如下表:








0

0







 
所以,函数的单调增区间是;单调减区间是.……7分
函数处取得极大值,在处取得极小值.……8分
(III)由题意,.
不妨设,则由
,则函数单调递增.10分
恒成立.
恒成立.
因为,因此,只需.
解得. 故所求实数的取值范围为. …12分
点评:构造出函数,把证明转化为证明单调递增是做本题的关键,运用了转化思想,对学生的能力要求较高,是一道中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(14分)设函数.
(1)当时,求的极值;
(2)当时,求的单调区间;
(3)若对任意,恒有成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分) 
已知a∈R,函数f(x)=4x3-2ax+a.
(1)求f(x)的单调区间;
(2)证明:当0≤x≤1时,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
已知函数
(1)求函数的单调区间和极值;
(2)已知的图象与函数的图象关于直线对称,证明:当时,;
(3)如果,证明: 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在(1,4)上是减函数,则实数的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:函数R上的减函数;命题q:在时,不等式恒成立,若pq是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)设函数
(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设函数的单调增区间为           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)设
(1)请写出的表达式(不需证明);
(2)求的极值
(3)设的最大值为的最小值为,求的最小值.

查看答案和解析>>

同步练习册答案