精英家教网 > 高中数学 > 题目详情
(本小题12分)
已知函数
(1)求函数的单调区间和极值;
(2)已知的图象与函数的图象关于直线对称,证明:当时,;
(3)如果,证明: 
(1)增,
(2) (3)见解析
(1)直接求导利用导数大(小)于零求其单调增(减)区间,再根据极值点左正右负是极大值点,左负右正是极小值点。
(2)先根据图像关于x=1对称,可知确定出y=g(x)的解析式。然后令,再利用导数求h(x)的最小值,证明h(x)min>0即可。
(3) 减,且由(2)可知,不可能同时大于1或同时小于1
所以只可能,,又
到此问题得以解决。
解:(1)增,
(2)
欲证时,即证

上单调递增上成立.
(3)减,且由(2)可知,不可能同时大于1或同时小于1
所以只可能,

上单调增
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数,其中.
(I)求函数的导函数的最小值;
(II)当时,求函数的单调区间及极值;
(III)若对任意的,函数满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
设函数,且,其中是自然对数的底数.
(1)求的关系;
(2)若在其定义域内为单调函数,求的取值范围;
(3)设,若在上至少存在一点,使得成立,求实数
取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知函数
(1)若函数上为增函数,求实数的取值范围;
(2)当时,求上的最大值和最小值;
(3)当时,求证对任意大于1的正整数恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知其中是自然对数的底 .
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)设,存在,使得成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于R上可导的任意函数f(x),若满足(x+1)f′(x)≥0,则有(  )
A.f(0)+f(-2)<2f(-1)B.f(0)+f(-2)≤2f(-1)
C.f(0)+f(-2)>2f(-1) D.f(0)+f(-2)≥2f(-1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知为实数,的导函数.
(Ⅰ)若,求上的最大值和最小值;
(Ⅱ)若上均单调递增,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数的图像在处的切线与直线平行。
(1)求的直线;
(2)求函数在区间上的最小值;
(3)若,利用结论(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ) 当时, 求函数的单调增区间;
(Ⅱ) 求函数在区间上的最小值;
(Ⅲ) 设,若存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案