精英家教网 > 高中数学 > 题目详情
设函数f (x)=x3-4xa,0<a<2.若f (x)的三个零点为x1x2x3,且x1x2x3,则
A.x1>-1B.x2<0C.x2>0D.x3>2
C

试题分析:∵函数f (x)=x3-4x+a,0<a<2,∴f′(x)=3x2-4.令f′(x)=0,得 x=±.∵当x<-时,f′(x)>0;在(-)上,f′(x)<0;在(,+∞)上,f′(x)>0.故函数在(-∞,-)上是增函数,在(-)上是减函数,在(,+∞)上是增函数.故f(-)是极大值,f()是极小值.再由f (x)的三个零点为x1,x2,x3,且x1<x2<x3,得 x1<-,-<x2,x3.根据f(0)=a>0,且f()=a-<0,得>x2>0.∴0<x2<1.故选C.
点评:本题函数的零点的定义,函数的零点与方程的根的关系,利用导数研究函数的单调性,利用导数求函数的极值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数().
(1)当时,求函数的单调区间;
(2)当时,取得极值.
① 若,求函数上的最小值;
② 求证:对任意,都有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的可导函数f(x),且f(x)图像连续,当x≠0时, ,则函数的零点的个数为(  )
A.1B.2C.0D.0或2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 在区间[-2,2]的最大值为20,求它在该区间的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的极值;
(2)当时,求的值域;
(3)设,函数,若对于任意,总存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在(1,4)上是减函数,则实数的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数为常数)在上有最大值3,那么此函数在上的最小值为(    )
A.-29B.-37C.-5D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)设函数
(Ⅰ)若在定义域内存在,而使得不等式能成立,求实数的最小值;
(Ⅱ)若函数在区间上恰有两个不同的零点,求实数的取值范围。

查看答案和解析>>

同步练习册答案