精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).
(1)f(x)的单调增区间为(-1,3), 单调减区间为(3,+∞)。
(2)
ⅰ. 7分
ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。若时, f(x)有极大值点,无极小值点。

试题分析:(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,
故,f(x)的单调增区间为(-1,3), 单调减区间为(3,+∞)。
(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,
=0有实根的条件是
ⅰ.  
ⅱ.当时,若 f(x)有极小值点;有极大值点。若时, f(x)有极大值点,无极小值点。
点评:中档题,研究函数的单调性、极值、最值等,是导数应用的基本问题。求函数的单调区间,主要研究导函数非负,确定增区间;利用导函数值非正,确定减区间。求函数的极值,遵循“求导数,求驻点,研究单调性,求极值”。本题(2)需要对a进行分类讨论,易出错。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若函数上是减函数,求实数的最小值;
(2)若,使)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数在R上可导,且,则的大小关系是(   )
A.f (-1 ) =" f" ( 1 )B.f (-1 ) < f ( 1 )
C.f (-1) > f ( 1 )D.不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在区间上单调递增,则的取值范围是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

有极值,
(Ⅰ)求的取值范围;
(Ⅱ)求极大值点和极小值点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f (x)=x3-4xa,0<a<2.若f (x)的三个零点为x1x2x3,且x1x2x3,则
A.x1>-1B.x2<0C.x2>0D.x3>2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证

查看答案和解析>>

同步练习册答案