精英家教网 > 高中数学 > 题目详情
已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.
(1)函数的单调递增区间是;单调递减区间是
(2)

试题分析:(1),根据题意,由于函数
当t=-e时,即导数为,,函数的单调递增区间是单调递减区间是
(2) 根据题意由于对于任意,不等式恒成立,则在第一问的基础上,由于函数,只要求解函数的最小值大于零即可,由于当t>0,函数子啊R递增,没有最小值,当t<0,那么可知,那么在给定的区间上可知当x=ln(-t)时取得最小值为2,那么可知t的取值范围是
点评:主要是考查了导数的运用,以及函数最值的运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)求的极值;
(Ⅱ)当时,若不等式上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的单调减区间(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数的导函数为,对任意都有成立,则(  )
A.B.
C.D.的大小不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数具有下列特征:,则的图形可以是下图中的(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)若,判断函数在定义域内的单调性;
(II)若函数在内存在极值,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数 在区间[-2,2]的最大值为20,求它在该区间的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
设函数
(Ⅰ)若,求的单调区间;
(Ⅱ)若当≥0时≥0,求的取值范围.

查看答案和解析>>

同步练习册答案