精英家教网 > 高中数学 > 题目详情
(本小题满分14分)如图,在三棱锥中,底面
分别在棱上,且  
(1)求证:平面
(2)当的中点时,求与平面所成的角的正弦值;
(3)是否存在点使得二面角为直二面角?并说明理由.

(1)略
(2)
(3)存在点E使得二面角是直二面角
解法1:
(1)∵PA⊥底面ABC,∴PA⊥BC.
,∴AC⊥BC.
∴BC⊥平面PAC.
(2)∵D为PB的中点,DE//BC,

又由(1)知,BC⊥平面PAC,
∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,
∵PA⊥底面ABC,∴PA⊥AB,又PA=AB,
∴△ABP为等腰直角三角形,∴
∴在Rt△ABC中,,∴.
∴在Rt△ADE中,
(3)∵AE//BC,又由(1)知,BC⊥平面PAC,∴DE⊥平面PAC,
又∵AE平面PAC,PE平面PAC,∴DE⊥AE,DE⊥PE,
∴∠AEP为二面角的平面角,
∵PA⊥底面ABC,∴PA⊥AC,∴.
∴在棱PC上存在一点E,使得AE⊥PC,这时
故存在点E使得二面角是直二面角.
解法2:如图,以A为原点建立空间直角坐标系
,由已知可得
.
(1)∵
,∴BC⊥AP.
又∵,∴BC⊥AC,∴BC⊥平面PAC.
(2)∵D为PB的中点,DE//BC,∴E为PC的中点,

∴又由(Ⅰ)知,BC⊥平面PAC,∴∴DE⊥平面PAC,垂足为点E.
∴∠DAE是AD与平面PAC所成的角,

.
与平面所成的角的正弦值为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
  已知:如图,长方体中,分别是棱,上的点,,.
  (1) 求异面直线所成角的余弦值;
  (2) 证明平面
  (3) 求二面角的正弦值.
                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
如图5,在底面为直角梯形的四棱锥中,

(1)求证:
(2)求直线
(3)设点E在棱PC上,,若,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC, △PAD是等边三角形,已知BD=2AD=8,AB=2DC=(1)设M是PC上的一点,证明:平面MBD⊥平面PAD(2)求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)当时,求直线AP与平面BDD1B1所成角的度数;
(2)在线段上是否存在一个定点,使得对任意的m,⊥AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.
(1)、求证:
(2)、求证:平面平面
(3)、求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图①,正三角形边长2,边上的高,分别为中点,现将沿翻折成直二面角,如图②
(1)判断翻折后直线与面的位置关系,并说明理由
(2)求二面角的余弦值
(3)求点到面的距离

图 ①                       图 2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(8分)如图,四棱锥底面是正方形且四个顶点在球的同一个大圆(球面被过球心的平面截得的圆叫做大圆)上,点在球面上且,且已知
(1)求球的体积;
(2)设中点,求异面直线所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形, ,点为棱的中点,点在棱上运动.

(1)求证
(II)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;
(III)在(II)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.

查看答案和解析>>

同步练习册答案