精英家教网 > 高中数学 > 题目详情
12.记者要为四名学生和他们的一名老师拍照,要求他们排成一排,老师必须站在正中间,则不同的排法共有(  )
A.120种B.72种C.56种D.24种

分析 根据题意,分2步进行分析:1、先安排老师,易得其有1种排法;2、将4名学生全排列,安排在其他4个位置,由排列数公式可得学生的排法数目,由分步计数原理原理计算可得答案.

解答 解:根据题意,分2步进行分析:
1、先安排老师,要求老师必须站在正中间,则其有1种排法;
2、将4名学生全排列,安排在其他4个位置,有A44=24种排法;
则不同的排法有1×24=24种;
故选:D,

点评 本题考查简单计数原理的应用,注意题目中有受限的元素,要先分析、满足受到限制的元素.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如果1+2i是实系数一元二次方程x2+ax+b=0的根,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于点R,过焦点F作倾斜角为$\frac{2π}{3}$的直线l与抛物线C交于A,B两点,过A,B两点分别作准线的垂线,垂足分别为P,Q,则S△PAR:S△QBR的值等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某校合唱节目由来自学校高一的14个班的同学组成,其中高一13班有2人,其余班级各有1人,合唱过程中有3人在前面领唱,则这3人来自3个不同班级的可能情况的种数为352.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某电视台一节目收视率很高,现要连续插播5个不同的广告,其中3个广告A、B、C插播时,A、B要相邻,B、C不相邻,则不同的播放方式的种数是36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{x^2}{a^2}-\frac{y^2}{3}$=1(a>0)有一个焦点与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为(  )
A.y=±$\frac{1}{2}$xB.y=±2xC.y=±$\frac{{\sqrt{3}}}{3}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知集合D={x|$\frac{24-x}{x-9}$>0},若a,b∈D,且$\frac{1}{a}$+$\frac{1}{2b}$=$\frac{1}{12}$,则9a•3b的最小值为354

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.化简复数$\frac{1}{{{{(1-i)}^2}}}$(其中i为虚数单位)所得结果为(  )
A.$\frac{i}{2}$B.-$\frac{i}{2}$C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知实数x∈[-1,1],y∈[0,2],则点P(x,y)落在不等式组$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$所表示的区域内的概率为$\frac{3}{8}$.

查看答案和解析>>

同步练习册答案