精英家教网 > 高中数学 > 题目详情
判断函数f(x)=
x2-2x+5x-1
在(3,+∞)上的单调性并证明你的结论.
分析:利用定义法判断函数的单调性,并证明.
解答:解:函数为增函数.
证明:任取3<x1<x2,则f(x1)-f(x2)=(x1-x2)(1-
4
(x1-1)(x2-1)
)

∵3<x1<x2,∴x1-x2<0,(x1-1)(x2-1)>(3-1)(3-1)=4
1-
4
(x1-1)(x2-1)
>0

∴f(x1)-f(x2)<0,即f(x1)<f(x2).
所以:函数f(x)在(3,+∞)上为单调递增函数.
点评:本题主要考查函数单调性的判断和证明,利用定义法或性质法是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为G的函数f(x),如果同时满足下列两个条件:①f(x)在G内是单调函数;②存在区间[a,b]⊆G,使f(x)在[a,b]上的值域亦为[a,b],那么就称f(x)为好函数.
(Ⅰ)判断函数f(x)=
lnx
ex
+1在(0,+∞)上是否为好函数?并说明理由;
(Ⅱ)求好函数f(x)=-x3+1符合条件的一个区间[a,b];
(Ⅲ)若函数f(x)=m+
x+2
是好函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D:(-∞,0)∪(0,+∞),且满足对于任意x,y∈D,有f(xy)=f(x)+f(y).
(I)求f(1),f(-1)的值;
(II)判断f(x)的奇偶性并说明理由;
(III)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足对任意实数x,y都有f(x+y)=f(x)+f(y)+1成立,且当x>0时,f(x)>-1,f(1)=0.
(1)求f(5)的值;
(2)判断f(x)在R上的单调性,并证明;
(3)若对于任意给定的正实数ε,总能找到一个正实数σ,使得当|x-x0|<σ时,|f(x)-f(x0)|<ε,则称函数f(x)在x=x0处连续.试证明:f(x)在x=0处连续.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(2+3x)-
3
2
x2
(1)求函数y=f(x)的极大值;
(2)令g(x)=f(x)+
3
2
x2+(m-1)x(m为实常数),试判断函数g(x)的单调性;
(3)若对任意x∈[
1
6
1
3
]
,不等式|a-lnx|+ln[f′(x)+3x]>0均成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为A,值域为B,如果存在函数x=g(t),使得函数y=f(g(t))的值域仍然是B,那么称函数x=g(t)是函数f(x)的一个等值域变换.
(1)判断下列函数x=g(t)是不是函数f(x)的一个等值域变换?说明你的理由.
①f(x)=2x+1,x∈R,x=g(t)=t2-2t+3,t∈R;
②f(x)=x2-x+1,x∈R,x=g(t)=2t,t∈R;
(2)设函数f(x)=log2(x2-x+1),g(t)=at2+2t+1,若函数x=g(t)是函数f(x)的一个等值域变换,求实数a的取值范围.

查看答案和解析>>

同步练习册答案