精英家教网 > 高中数学 > 题目详情

【题目】如图所示,MNK分别是正方体ABCDA1B1C1D1的棱ABCDC1D1的中点.

求证:(1)AN∥平面A1MK

(2)平面A1B1C⊥平面A1MK.

【答案】(1)见解析(2)见解析

【解析】试题分析: 要证明平面,只需要证明平行于平面内的一条直线,容易证明,从而得到证明;

要证明平面,只需要证明平面内的直线垂直于平面即可,而容易证明,从而问题得到解决;

解析:证明 (1)如图所示,连接NK.

在正方体ABCDA1B1C1D1中,

∵四边形AA1D1DDD1C1C都为正方形,

AA1DD1AA1DD1C1D1CDC1D1CD.[2]

NK分别为CDC1D1的中点,

DND1KDND1K

∴四边形DD1KN为平行四边形.

KNDD1KNDD1AA1KNAA1KN.

∴四边形AA1KN为平行四边形.∴ANA1K.

A1K平面A1MKAN平面A1MK

AN∥平面A1MK.

(2)如图所示,连接BC1.

在正方体ABCDA1B1C1D1中,ABC1D1ABC1D1.

MK分别为ABC1D1的中点,

BMC1KBMC1K.

∴四边形BC1KM为平行四边形.∴MKBC1.

在正方体ABCDA1B1C1D1中,A1B1⊥平面BB1C1C

BC1平面BB1C1CA1B1BC1.

MKBC1A1B1MK.

∵四边形BB1C1C为正方形,∴BC1B1C.

MKB1C.

A1B1平面A1B1CB1C平面A1B1CA1B1B1CB1MK⊥平面A1B1C.

又∵MK平面A1MK

∴平面A1B1C⊥平面A1MK.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图. 图中A点表示十月的平均最高气温约为,B点表示四月的平均最低气温约为. 下面叙述不正确的是 ( )

A. 各月的平均最低气温都在以上

B. 七月的平均温差比一月的平均温差大

C. 三月和十一月的平均最高气温基本相同

D. 平均最高气温高于的月份有5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列两圆的位置关系.

(1)C1x2y2-2x-3=0,C2x2y2-4x+2y+3=0;___________

(2)C1x2y2-2y=0,C2x2y2-2x-6=0;___________

(3)C1x2y2-4x-6y+9=0,C2x2y2+12x+6y-19=0;___________

(4)C1x2y2+2x-2y-2=0,C2x2y2-4x-6y-3=0.___________

(5)x2y2=9x2y2-8x+6y+9=0 ________________

(6)C1x2y2-2x-6y-6=0与圆C2x2y2-4x+2y+4=0______

(7)x2y2+6x-7=0和圆x2y2+6y-27=0 ____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列A: ,… (N≥2)。如果对小于n(2≤n≤N)的每个正整数k都有 ,则称n是数列A的一个“G时刻”。记“G(A)是数列A 的所有“G时刻”组成的集合。
(1)对数列A:-2,2,-1,1,3,写出G(A)的所有元素;
(2)证明:若数列A中存在 使得 > ,则G(A)
(3)证明:若数列A满足 - ≤1(n=2,3, …,N),则GA.的元素个数不小于 -

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则的取值范围是( )

A. [,0) B. [,0] C. [,1) D. [,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.
(1)A.【选修4—1几何证明选讲】
如图,在△ABC中,∠ABC=90°,BDACD为垂足,EBC的中点,求证:∠EDC=∠ABD.

(2)B.【选修4—2:矩阵与变换】
已知矩阵A= 矩阵B的逆矩阵B1= ,求矩阵AB.
(3)【选修4—4:坐标系与参数方程】在平面直角坐标系xOy中,已知直线l的参数方程为 t为参数),椭圆C的参数方程为 为参数).设直线l与椭圆C相交于AB两点,求线段AB的长.
(4)D. 设a>0,|x﹣1|< ,|y﹣2|< ,求证:|2x+y﹣4|<a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1扯皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如表所示:

配料 原料

A

B

C

4

8

3

5

5

10

现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车品乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别生产甲、乙两种肥料,求出此最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】漳州市博物馆为了保护一件珍贵文物,需要在馆内一种透明又密封的长方体玻璃保护罩内充入保护液体.该博物馆需要支付的总费用由两部分组成:①罩内该种液体的体积比保护罩的容积少0.5立方米,且每立方米液体费用500元;②需支付一定的保险费用,且支付的保险费用与保护罩容积成反比,当容积为2立方米时,支付的保险费用为4000元.

(Ⅰ)求该博物馆支付总费用与保护罩容积之间的函数关系式;

(Ⅱ)求该博物馆支付总费用的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABCA1A=AB=AC=2,A1C1=1,.

(1)证明:BCA1D

(2)求二面角A-CC1-B的余弦值.

查看答案和解析>>

同步练习册答案