精英家教网 > 高中数学 > 题目详情
20.经过两点(x1,y1),(x2,y2)的直线方程都可以表示为(  )
A.$\frac{x-{x}_{1}}{{x}_{2}-{x}_{1}}$=$\frac{y-{y}_{1}}{{y}_{2}-{y}_{1}}$B.$\frac{x-{x}_{2}}{{x}_{1}-{x}_{2}}$=$\frac{y-{y}_{2}}{{y}_{1}-{y}_{2}}$
C.(y-y1)(x2-x1)=(x-x1)(y2-y1D.y-y1=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$

分析 利用两点式即可得出.

解答 解:当x1≠x2,y1≠y2时,由两点式可得直线方程为:$\frac{y-{y}_{1}}{{y}_{2}-{y}_{1}}$=$\frac{x-{x}_{1}}{{x}_{2}-{x}_{1}}$,
化为:(y-y1)(x2-x1)=(x-x1)(y2-y1),
对于x1=x2或y1=y2时上述方程也成立,
因此直线方程为:(y-y1)(x2-x1)=(x-x1)(y2-y1).
故选:C.

点评 本题考查了两点式、分类讨论方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}&{\;}\\{x+y≤2}&{\;}\\{y≥0}&{\;}\end{array}\right.$,当且仅当x=y=1时,z=ax+y取得最大值,则实数a的取值范围是(  )
A.(-1,1)B.(-∞,1)C.(-∞,-1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a=log32,b=log2$\frac{1}{8}$,c=$\sqrt{2}$,则(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1,F2,点F2到直线x+$\sqrt{3}$y=0的距离为$\frac{1}{2}$,若点P在椭圆E上,△F1PF2的周长为6.
(1)求椭圆E的方程;
(2)若过F1的直线l与椭圆E交于不同的两点M,N,求△F2MN的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)在△ABC中,a=3,c=2,B=60°求b
(2)在△ABC中,A=60°,B=45°,a=2 求c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知四棱锥P-ABCD,其三视图和直观图如图所示,E为BC中点.
(Ⅰ)求此几何体的体积;
(Ⅱ)求证:平面PAE⊥平面PDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列$\sqrt{3},3,\sqrt{15},…,\sqrt{3(2n-1)},…$,那么9是此数列的第(  )项.
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次性随机摸出2只球,则摸到同色球的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列命题
①y=$\frac{1}{x}$在定义域内为减函数;
②y=(x-1)2在(0,+∞)上是增函数;
③y=-$\frac{1}{x}$在(-∞,0)上为增函数;
④y=kx不是增函数就是减函数.
其中错误命题的个数有3个.

查看答案和解析>>

同步练习册答案